pls solve questions 88,91
Attachments:
Answers
Answered by
1
88) (√11-√5)/(√11+√5)
rationalising factor of (√11+√5) is (√11-√5)
⇒[(√11-√5)×(√11-√5)]/[(√11+√5)×(√11-√5)=(√11-√5)²/(√11)²-(√5)²
=(11+5-2√55)/11-5
=(16-2√55)/6
=[2(8-√55)]/6
=(8-√55)/3
91) 1/(1+√2-√3)
rationalising factor of [1+(√2-√3)] is [1-(√2-√3)]
⇒{1/[1+(√2-√3)]}×{[1-(√2-√3)]/[1-(√2-√3)]}=(1-√2-√3)/[1²-(√2-√3)²
=(1-√2-√3)/(1-2-3+2√6)
=(1-√2-√3)/(2√6-4).
rationalising factor of (√11+√5) is (√11-√5)
⇒[(√11-√5)×(√11-√5)]/[(√11+√5)×(√11-√5)=(√11-√5)²/(√11)²-(√5)²
=(11+5-2√55)/11-5
=(16-2√55)/6
=[2(8-√55)]/6
=(8-√55)/3
91) 1/(1+√2-√3)
rationalising factor of [1+(√2-√3)] is [1-(√2-√3)]
⇒{1/[1+(√2-√3)]}×{[1-(√2-√3)]/[1-(√2-√3)]}=(1-√2-√3)/[1²-(√2-√3)²
=(1-√2-√3)/(1-2-3+2√6)
=(1-√2-√3)/(2√6-4).
saloni27:
first one is right but the ans.of second question is 1+√2+√6/2+4
Similar questions