Math, asked by Anonymous, 4 months ago

pls solve the above matching​

Attachments:

Answers

Answered by suhail2070
1

Answer:

option a) is correct.

C , D , B , A

Attachments:
Answered by sharanyalanka7
9

Answer:

Given,

 \frac{sinx}{a}  =  \frac{cosx}{b}  =  \frac{tanx}{c}

To Find :-

1) bc

2) a² + b²

3) \sf\dfrac{1}{ck} + \sf\dfrac{ak}{1 + bk}

4)a² + b² + c²

\huge\sf\underline{solution}

\sf\frac{sinx}{a} = k --- (1)

\sf\frac{cosx}{b} = k ---(2)

\sf\frac{tanx}{c} = k ----(3)

equation 2 × equation 3

 \frac{cosx \times tanx}{bc}  = k \times k

 \frac{cosx \times  \frac{sinx}{cosx} }{bc}  = k {}^{2}

\sf\therefore tanx = \sf\frac{sinx}{cosx}

 \frac{sinx}{bc}  = k {}^{2}

bc =  \frac{sinx}{ {k}^{2} }

from equation --(1)

sinx = ak

\sf\implies bc = \sf\frac{ak}{k²}

\sf\therefore bc = \sf\frac{a}{k}

2) a² + b²

from equation (1):-

a = \sf\frac{sinx}{k}

"squaring on both sides"

a² = \sf\frac{sin²x}{k²}

from equation -- (2) :-

b = \sf\dfrac{cosx}{k}

"squaring on both sides"

b² = \sf\dfrac{cos²x}{k²}

 {a}^{2}  +  {b}^{2}  =  \frac{sin {}^{2}x +  {cos}^{2}x  }{ {k}^{2} }

 {a}^{2}  +  {b}^{2}  =  \frac{1}{ {k}^{2} }

3)\sf\dfrac{1}{ck} + \sf\dfrac{ak}{1 + bk}

4) a² + b² + c²

Note :- 3,4 sums are in the attachment.

Attachments:
Similar questions