Math, asked by rehadewan08, 1 month ago

pls solve the above question ↑
don't spam ​

Attachments:

Answers

Answered by TYKE
13

Question :

 \sf \small  \frac{1}{2 +  \sqrt{5} }  +  \frac{1}{ \sqrt{5} +  \sqrt{6}  }  +  \frac{1}{ \sqrt{6}  +  \sqrt{7} }  +  \frac{1}{ \sqrt{7}  +  \sqrt{8} }  +  \frac{1}{ \sqrt{8} +  \sqrt{9}  }

Solution :

 \sf \small \frac{1}{2 +  \sqrt{5} }  +  \frac{1}{ \sqrt{5} +  \sqrt{6}  }  +  \frac{1}{ \sqrt{6}  +  \sqrt{7} }  +  \frac{1}{ \sqrt{7}  +  \sqrt{8} }  +  \frac{1}{ \sqrt{8} +  \sqrt{9}  }

Now we have to rationalize the denominator

 \sf \tiny \frac{1(2 -  \sqrt{5} )}{(2+  \sqrt{5})(2 -  \sqrt{5})}  +  \frac{1( \sqrt{5}   -  \sqrt{6} )}{( \sqrt{5}  +  \sqrt{6}  )( \sqrt{5} -  \sqrt{6})}  +  \frac{1( \sqrt{6} -  \sqrt{7}  )}{( \sqrt{6}  +  \sqrt{7})( \sqrt{6} -  \sqrt{7})   }  +  \frac{1( \sqrt{7}  -  \sqrt{8}) }{( \sqrt{7}  +  \sqrt{8})( \sqrt{7}  -  \sqrt{8} ) }  +  \frac{1( \sqrt{8} -  \sqrt{9}  )}{( \sqrt{8}  +  \sqrt{9} )( \sqrt{8} -  \sqrt{9}  )}

Now we need to simplify the denominator using (a + b)(a - b) → a² – b²

√9 can be written as 3 as 3² = 9

 \sf \small \frac{2 -  \sqrt{5} }{ {(2)}^{2} -  {( \sqrt{5} )}^{2}  }  +  \frac{ \sqrt{5}  -  \sqrt{6} }{ {( \sqrt{5}) }^{2}  -  {( \sqrt{6}) }^{2} }  +  \frac{ \sqrt{6} -  \sqrt{7}  }{ {( \sqrt{6}) }^{2}  - {( \sqrt{7} )}^{2}  }  +  \frac{ \sqrt{7}  -  \sqrt{8} }{ {( \sqrt{7} )}^{2} -  {( \sqrt{8} )}^{2}  }  +  \frac{ \sqrt{8} -  3}{ {( \sqrt{8}) }^{2} -  {(3)}^{2}  }

 \sf \small \frac{2 -  \sqrt{5} }{4 - 5}  +  \frac{ \sqrt{5} -  \sqrt{6}  }{5 - 6}  +  \frac{ \sqrt{6} -  \sqrt{7}  }{6 - 7}  +  \frac{ \sqrt{7}  -  \sqrt{8} }{7 - 8}  +  \frac{ \sqrt{8} - 3 }{8 - 9}

  \sf \small\frac{2 -  \sqrt{5} }{ - 1}  +  \frac{ \sqrt{5} -  \sqrt{6}  }{ - 1}  +  \frac{ \sqrt{6} -  \sqrt{7}  }{ - 1} +  \frac{ \sqrt{7}  -  \sqrt{8} }{ - 1}   +  \frac{ \sqrt{8} -  \sqrt{3}  }{ - 1}

Now taking -1 as common we get

 \sf \small \frac{2 -  \sqrt{5} +  \sqrt{5}   -  \sqrt{6}  +  \sqrt{6} -  \sqrt{7}   +  \sqrt{7}  -  \sqrt{8}  +  \sqrt{8} - 3 }{ - 1}

All the no.s in the numerator will get cancelled because of opposite signs

  \sf \small \frac{2 -  3 }{ - 1}

 \sf \small \frac{ - 1}{ - 1}

1

So the result is 1

Similar questions