Math, asked by Anonymous, 2 months ago

Pls solve the above question
Kindly don't spam+_+​

Attachments:

Answers

Answered by mandeepsingh29295
6

Answer:

This is not full but it may be helpful to you Sorry for inconvience

Attachments:
Answered by XxMrZombiexX
118

\underline{\red{\sf{given \: that : -  }}}

  •  \sf \: p =  \dfrac{ \sqrt{10} -  \sqrt{5}  }{ \sqrt{10} +  \sqrt{5}  }  \:
  •  \sf \: q =  \dfrac{ \sqrt{10} -  \sqrt{5}  }{ \sqrt{10}  +  \sqrt{5} }

\underline{\blue{\sf{to \: find :  - }}}

  •  \sf \: prove \: that \: the \:   \purple{\sqrt{q}  -  \sqrt{p}  - 2 \sqrt{pq}  = 0}

\underline{\green{\sf{solution : -  }}}

In this question, we have been asked to prove that  \sf \:  \sqrt{q}  -  \sqrt{p}   - 2 \sqrt{pq}  = 0we have to mind that method of contrcidiction is used to prove a statement

it is given that the  \sf \: q \:  =  \dfrac{ \sqrt{10} +  \sqrt{5}  }{ \sqrt{10} -  \sqrt{5}  }  \:  \:  \: and \:  \:  \: p =  \dfrac{ \sqrt{10}  -  \sqrt{5} }{ \sqrt{10} +  \sqrt{5}  }

To show that ,

 \sf \orange{\longrightarrow} \:  \:  \sqrt{q}  -  \sqrt{p}  - 2 \sqrt{pq}  = 0 \\  \\  \\  \boxed{ \sf \orange{\longrightarrow} \sqrt{q}  -  \sqrt{p}   = 2 \sqrt{pq} }

now , we squaring both sides

 \sf \orange{\longrightarrow}q + p - 2 \sqrt{pq}  = 4pq

 \\ \\  \tt \orange{\longrightarrow}q =  \frac{ \sqrt{10} +  \sqrt{5}  }{ \sqrt{10} -  \sqrt{5}  }  \\  \\  \\  \tt \orange{\longrightarrow}  \frac{ \sqrt{10} +  \sqrt{5}  }{ \sqrt{10} -  \sqrt{5}  }  \times   \frac{ \sqrt{10}  +  \sqrt{5} }{ \sqrt{10}  +  \sqrt{5} }  \\  \\  \\  \tt \orange{\longrightarrow} \frac{10 + 5 + 2 \sqrt{50} }{10 - 5}  \\  \\  \\  \tt \orange{\longrightarrow}  \frac{15 + 2 \times 5 \sqrt{50} }{10 - 5} \\  \\  \\  \tt \orange{\longrightarrow} \frac{ \cancel{15} + 2 \times  \cancel5 \sqrt{2} }{ \cancel5}  \\  \\  \\

 \qquad{ \tt \orange{\longrightarrow}3 + 2 \sqrt{2} } \qquad \qquad -  -  -  \bigg  \lgroup \: eq(1) \bigg \rgroup \\

now we find

 \sf \:  \sqrt{p}  =  \dfrac{ \sqrt{10}   -  \sqrt{5} }{ \sqrt{10} +  \sqrt{5}  }

 \orange{\tt\longrightarrow}\tt \:  \sqrt{p}  =  \dfrac{ \sqrt{10}   -  \sqrt{5} }{ \sqrt{10} +  \sqrt{5}  }  \\  \\  \\  \orange{\tt\longrightarrow}\tt \frac{ \sqrt{10} -  \sqrt{5}  }{ \sqrt{10}  +  \sqrt{5} }  \times  \frac{ \sqrt{10}  -  \sqrt{5} }{ \sqrt{10}  -  \sqrt{5} }  \\  \\  \\ \orange{\tt\longrightarrow}\tt \frac{10 + 5 - 2 \sqrt{50} }{10 - 5}  \\  \\  \\ \orange{\tt\longrightarrow}\tt \frac{15 - 2 \times 5 \sqrt{2} }{10 - 5}  \\  \\  \\ \orange{\tt\longrightarrow}\tt \frac{ \cancel{15} - 2 \times  \cancel5 \sqrt{2} }{ \cancel5}  \\  \\  \\

 \qquad\orange{\tt\longrightarrow}\tt3 - 2 \sqrt{2}  \qquad \qquad  -  -  - \bigg  \lgroup \: eq(2) \bigg \rgroup

From eq (1) and eq (2)

 \sf \: pq\tt  \:  \: =  \:  \: (3 + 2 \sqrt{2})(3 - 2 \sqrt{2}  ) \\  \\  \\ \orange{\tt\longrightarrow}\tt9 - 8 \\  \\  \\ \orange{\tt\longrightarrow}\tt1 -  -  -  \bigg \lgroup \: eq(3) \bigg \rgroup

putting value in q & p in

  \qquad \qquad \qquad \qquad \qquad \: q + p = 2 \sqrt{pq}  = 4pq \\

we get ,

\orange{\tt\longrightarrow}\tt3 + 2 \sqrt{2}  + 3 -  2\sqrt{1}  = 4 \times 1 \qquad \: from \: eq(1) \: (2) \: and \: (3)

now solving

\orange{\tt\longrightarrow}\tt(3 + 2  \cancel{\sqrt{2}}  )+( 3 -  2 \cancel{\sqrt{2} } ) - 2 \sqrt{1} = 4 \times\sqrt{ 1 }\\  \\  \\\orange{\tt\longrightarrow}\tt3 + 2 + 3 - 2 - 2 \cancel {\sqrt{1}  } = 4 \cancel{ \sqrt{1} } \\  \\  \\ \orange{\tt\longrightarrow}\tt5 + 1 - 2  = 4\\  \\  \\ \orange{\tt\longrightarrow}\tt6 - 2 = 4 \\  \\  \\ \orange{\tt\longrightarrow}\tt4 = 4 \\  \\  \\ \orange{\tt\longrightarrow}\tt4 - 4 = 0 \\  \\  \\\orange{\tt\longrightarrow}\tt0 = 0 \\  \\  \\  \tt as \: \sqrt{}  0 = 0

 \boxed{ \large \underline{  \frak{hence \:  \sqrt{q}  -  \sqrt{p}  - 2 \sqrt{pq}  = 0}}}

 \qquad \qquad \qquad \qquad \qquad \:  \huge \tt \red{hence \: proved}

Similar questions