Math, asked by shivpshukla, 11 months ago

Pls solve the first question of tis page

Attachments:

Answers

Answered by mrsonu962
0

 \sin(x)  +  \sin(2x)  +  \sin(4x)  +  \sin(5x)  = 4 \cos( \frac{x}{2} )  \cos( \frac{3x}{2} )  \sin(3x)  \\ lhs =  \\ \sin(x)  +  \sin(2x)  +  \sin(4x)  +  \sin(5x)   \\  = ( \sin(5x)  +  \sin(x) ) + ( \sin(2x)  +  \sin(4x) ) \\  = 2 \sin(3x)  \cos(2x)  + 2 \sin(3x)  \cos(x)  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \binom{ \sin(x)  +  \sin(y) = 2 \sin( \frac{x + y}{2} )  \cos( \frac{x - y}{2} )  }{}  \\  = 2 \sin(3x)  ( \cos(2x)  +  \cos(x) ) \\  = 2 \sin(3x) (2 \cos( \frac{3x}{2} )  \cos( \frac{x}{2} ) ) \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \binom{ \cos(x) +  \cos(y)  = 2 \cos( \frac{x + y}{2} )  \cos( \frac{x - y}{2} )  }{}  \\  = 4 \cos( \frac{x}{2} )  \cos( \frac{3x}{2} )  \sin(3x)

scroll left ☞

Similar questions