Math, asked by smitapanda403, 2 months ago

pls solve the problem. It's from fundamental of maths​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 (log_{10}(x) ) ^{2}  +  log_{10}(x)^{2}  -  \{( log_{10}(2) )^{2} - 1 \} = 0 \\

  \implies \: (log_{10}(x) ) ^{2}  + 2 log_{10}(x) -  \{( log_{10}(2) )^{2} - 1 \} = 0 \\

Let  log_{10}(x) = y

Then,

   \: y ^{2}  + 2y -  \{( log_{10}(2) )^{2} - 1 \} = 0 \\

  \implies\: y =  \frac{ - 2 \pm \sqrt{4+ 4 {( log_{10}(2) )}^{2} - 4 }  }{2}  \\

  \implies\: y =  \frac{ - 2 \pm \sqrt{4 {( log_{10}(2) )}^{2}}  }{2}  \\

  \implies\: y =  \frac{ - 2 \pm 2 log_{10}(2)   }{2}  \\

  \implies\: y =  - 1\pm  log_{10}(2)     \\

  \implies\: y =  - 1 +  log_{10}(2)   \:  \: or \:  \: y =  - 1 -  log_{10}(2)    \\

  \implies\:  x =  10 ^{- 1 +  log_{10}(2) }  \:  \: or \:  \: x  =10 ^{  - 1 -  log_{10}(2)   } \\

  \implies\:  x =  10 ^{- 1} .10^{ log_{10}(2)}   \:  \: or \:  \: x  =10 ^{  - 1 }.10 ^{ -  log_{10}(2) }   \\

  \implies\:  x =  2 \times 10 ^{- 1}    \:  \: or \:  \: x  =10 ^{  - 1} \times  {2}^{ - 1}   \\

  \implies\:  x =  \frac{1}{5}    \:  \: or \:  \: x  = \frac{1}{20}   \\

Similar questions