Math, asked by vaman3703, 7 months ago

Pls solve the question

Attachments:

Answers

Answered by Anonymous
20

Answer:

\begin{tabular}{|c|c|}\cline{1-2}  \bigstar \ \textsf{\textbf{ Different Number of transport}}&  \bigstar \ \textsf{\textbf{No. of Students}} \\\cline{1-2}\tt School Bus& \tt 500\\\cline{1-2}\tt Private Bus& \tt 250 \\\cline{1-2} \tt Bicycle & \tt 125 \\\cline{1-2} \tt Rickshaw& \tt 125 \\\cline{1-2}& \textsf{\textbf{Total = 1000}}\\\cline{1-2}\end{tabular}

\qquad\qquad\:\:\large\underline{\frak{Pie \:Chart :}}\\\\\\

\setlength{\unitlength}{1.5mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\qbezier(5.5,32)(12,32)(45,32)\qbezier(24.5,32)(24.5,32)(10,16.5)\qbezier(25,32)(25,32)(41,18)\put(24 ,32){ \circle*{1}} \put(20 ,16){$\sf Private\ Bus$}\put(23 ,39){$\textit{500} $}\put(10 ,25){$\textit{125} $}\put(36 ,25){$\textit{125} $}\put(23 ,20){$\textit{250} $}\put(21 ,42){$\sf School\ Bus$}}\put(35,28){$\sf Bicycle$}}\put(23,28){$\sf Rickshaw$}\end{picture}

Given Parameter :

  • Total number of students = 1000

As we know that,

\large\dag \:  \: \sf Central  \: angle \:  of  \:  component = \Bigg\lgroup \dfrac{Value  \: of  \: Component}{Total  \: Value} \Bigg\rgroup \times 360^{ \circ}  \\  \\

\boxed{\boxed{\begin{array}{c|c|c}\textsf { \textbf{Mode of transport}} &\textsf{ \textbf{ Number of students}}&\textsf{ \textbf{Central angle}}\\\frac{\qquad \qquad \qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad \qquad\qquad}{}\\\sf School  \: Bus&\sf 500&\sf  \dfrac{500}{1000} \times 360^{\circ} = {180}^{\circ}  \\\\\sf Private  \: Bus &\sf 250&\sf \dfrac{250}{1000} \times 360^{\circ} = {90}^{\circ} \\\\\sf  Bicycle&\sf 125 &\sf \dfrac{125}{1000} \times 360^{\circ} = {45}^{\circ} \\\\\sf Rickshaw&\sf 125&\sf \dfrac{125}{1000} \times 360^{\circ} = {45}^{\circ}\end{array}}}

Similar questions