Math, asked by maazayan872, 4 days ago

Pls solve the question in the attached pic

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \tan( \theta)  =  \dfrac{m}{n}

 \implies  \dfrac{\sin( \theta)}{ \cos( \theta) }  =  \dfrac{m}{n}

 \implies  \dfrac{m\sin( \theta)}{ n\cos( \theta) }  =  \dfrac{m^{2} }{n^{2} }

Applying componendo and dividendo,

 \implies  \dfrac{m\sin( \theta) + n\cos( \theta)}{  m\sin( \theta)  -  n\cos( \theta)}  =  \dfrac{m^{2}   +  {n}^{2} }{ {m}^{2}  - n^{2} }  \\

 \implies  \dfrac{m\sin( \theta)  -  n\cos( \theta)}{  m\sin( \theta)   +   n\cos( \theta)}  =  \dfrac{m^{2}    -   {n}^{2} }{ {m}^{2}   +  n^{2} }  \\

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

 \sf \: tan\theta = \dfrac{m}{n}, \: prove \: that \: \dfrac{msin\theta - ncos\theta}{msin\theta + ncos\theta}  = \dfrac{ {m}^{2} -  {n}^{2} }{ {m}^{2} +  {n}^{2} }

 \green{\large\underline{\sf{Solution-}}}

Given that

\red{\rm :\longmapsto\:tan\theta =  \dfrac{m}{n} }

Now, Consider

\rm :\longmapsto\:\dfrac{msin\theta - ncos\theta}{msin\theta + ncos\theta}

\rm \:  =  \: \dfrac{cos\theta\bigg[m\dfrac{sin\theta}{cos\theta}  - n\bigg]}{cos\theta\bigg[m\dfrac{sin\theta}{cos\theta}  + n\bigg]}

\rm \:  =  \: \dfrac{mtan\theta - n}{mtan\theta + n}

\rm \:  =  \: \dfrac{m \times \dfrac{m}{n}  - n}{m \times \dfrac{m}{n}  + n}

\rm \:  =  \: \dfrac{\dfrac{ {m}^{2} }{n}  - n}{\dfrac{ {m}^{2} }{n}  + n}

\rm \:  =  \: \dfrac{\dfrac{ {m}^{2} -  {n}^{2} }{n}}{\dfrac{ {m}^{2}  +  {n}^{2} }{n}}

\rm \:  =  \: \dfrac{ {m}^{2}  -  {n}^{2} }{ {m}^{2}  +  {n}^{2} }

Hence,

 \red{\sf \: tan\theta = \dfrac{m}{n}, \: \rm \implies\: \: \dfrac{msin\theta - ncos\theta}{msin\theta + ncos\theta}  = \dfrac{ {m}^{2} -  {n}^{2} }{ {m}^{2} +  {n}^{2} }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions