Math, asked by krishnasori22, 1 month ago

pls solve the question in the attatchement

Attachments:

Answers

Answered by JayeshMohapatra
0

Answer:

18CBA Dude That easy

Step-by-step explanation:

hope it helpful

Answered by senboni123456
0

Step-by-step explanation:

We know,

For any matrix A,

 \tt{ A \cdot \: adj( A )  = | A| \cdot I  }

 \tt{ \implies A^{ - 1}   \cdot A \cdot \: adj( A )  = A^{ - 1}\cdot | A| \cdot I  }

 \tt{ \implies I\cdot \: adj( A )  =| A| \cdot A^{ - 1} \cdot I  }

 \tt{ \implies adj( A )  =| A| \cdot A^{ - 1}  }

Now, we have,

 \tt{ \blue{adj \left(  A^{ - 1}  \left( adj \:  B \right)  C^{ - 1}  \right)}}

 \tt{  = adj \left(  A^{ - 1} \cdot   |B|   \:  B^{ - 1}   \cdot C^{ - 1}  \right)}

 \tt{   = |  B | \:  \:  adj \left(  A^{ - 1}B^{ - 1}   \cdot C^{ - 1}  \right)}

 \tt{   = |  B | \:  \:  adj \left(  (BA )^{ - 1}   \cdot C^{ - 1}  \right)}

 \tt{   = |  B | \:  \:  adj \left(  (C BA )^{ - 1}    \right)}

 \tt{   = |  B | \:  \cdot  | C BA |    \: C BA}

 \tt{   = |  B |^{2}  \:  \cdot  | C|  \cdot  | A |    \: C BA}

 \tt{   = 9  \:  \cdot   \dfrac{1}{4}   \cdot  2    \: C BA}

 \tt{   =   \dfrac{9}{2}      \: C BA}

Similar questions