pls solve these questions
Answers
Step-by-step explanation:
here is your answer
.........ok
Answer:
1. An angle on a straight line is 180°
⇒ 50° + 4x = 180°
4x = 180° - 50°
x = 130/4
x = 32.5
2. ∠POQ = x+y
Now, angle on a straight line is 180°
⇒ x+x+y+y = 180°
2x + 2y = 180°
2(x+y) = 180°
x+y = 180/2
x+y = 90°
⇒ ∠POQ = 90°
3. ∠COB = ∠AOD { Vertically opposite angles }
⇒ ∠COB = ∠AOD = 5y
Also, angle on a straight line is 180°
⇒ ∠AOP + ∠QOD + ∠AOD = 180°
5y + 2y + 5y = 180°
12y = 180°
y = 180/12
y = 15°
4. ∠AOC = ∠BOD = x { Vertically opposite angles}
and, ∠AOD + ∠BOC = y { Vertically opposite angles}
Given, ∠AOC + ∠BOC + ∠BOD = 270°
⇒ x+y+x = 270°
2x+y = 270 -----1.
also, Angle on a straight line is 180°
⇒ ∠AOC + ∠AOD = 180°
x + y = 180 -----2.
Subtracting 2. from 1.
2x + y = 270
x + y = 180
- - -
x = 90
Put value of x in 2.
90 + y =180
y = 180 - 90
y = 90
∴ ∠AOC = ∠BOD = x = 90°
and, ∠AOD + ∠BOC = y = 90°
5. Given: ∠AOE = ∠BOE = x
As we know: ∠FOE = ∠FOB + ∠BOE
180° = ∠FOB + x
180° - x = ∠FOB -----1.
and, ∠FOE = ∠AOE + ∠FOA
180° = x + ∠FOA
180° - x = ∠FOA -----2.
From 1. and 2.
∠FOA = ∠FOB
Step-by-step explanation:
Hope it helps you :)