Math, asked by amazonwala, 17 days ago

pls solve this equation​

Attachments:

Answers

Answered by user0888
13

\Huge\text{$\overline{\rm{CD}}=2\sqrt{105}\ \rm{cm}$}

\Large\textrm{We are given: -}

  • \overline{\rm{AB}}=24\ \rm{cm}
  • \textrm{The distance between $\overline{\rm{AB}}$ and $\overline{\rm{CD}}$ is 17 cm.}
  • \textrm{The radius is $13$ cm.}

\Large\textrm{To find: -}

\textrm{The length of $\overline{\rm{CD}}$.}

\Large\textrm{We know, }

  • "The radius divides the chord equal and perpendicularly."

Let \overline{\rm{ON}}=x\ \rm{cm} so \overline{\rm{OM}}=13-x\ \rm{cm}.

By Pythagorean theorem on \triangle\rm{AOM},

(13-x)^{2}+12^{2}=13^{2}

(x-13)^{2}=25

\textrm{$x-13=5$ or $x-13=-5$}

\therefore x=8

\Large\textrm{We know, }

  • \overline{\rm{ON}}=8\ \rm{cm}
  • \textrm{The radius is 13 cm.}
  • \triangle\rm{CON} is a right triangle.

By Pythagorean theorem on \triangle\rm{CON},

\overline{\rm{CN}}^{2}+\overline{\rm{ON}}^{2}=r^{2}

\overline{\rm{CN}}^{2}+8^{2}=13^{2}

\overline{\rm{CN}}^{2}=13^{2}-8^{2}

\overline{\rm{CN}}^{2}=(13+8)\cdot(13-8)

\overline{\rm{CN}}^{2}=3\cdot5\cdot7

\therefore\overline{\rm{CN}}=\sqrt{105}\ \rm{cm}

\Large\textrm{We know, }

  • \rm{N} divides \overline{\rm{CD}} equally.

2\overline{\rm{CN}}=\overline{\rm{CD}}

\therefore\overline{\rm{CD}}=2\sqrt{105}\ \rm{cm}

Similar questions