Math, asked by simantinipatil1, 10 months ago

Pls solve this example of differentiation 12th Class.... Appropriate answer will be marked BRAINLIEST....

Attachments:

Answers

Answered by kaushik05
27

To Differentiate:

 \star \:  { \tan}^{ - 1} ( \frac{x}{ \sqrt{1 -  {x}^{2} } } ) \:  \:  \: w.r.t \:  \:  { \sec}^{ - 1}  (\frac{1}{2 {x}^{2} - 1 } )

Let ,

y =  { \tan}^{ - 1} ( \frac{x}{ \sqrt{1 -  {x}^{2} } } ) \\

and

z =  { \sec}^{ - 1} ( \frac{1}{2 {x}^{2} - 1 } ) \\

Here Put :

 x =  \cos \theta

For y

 \implies \: y =  {  \tan}^{ - 1} ( \frac{ \cos \theta}{ \sqrt{1 -  { \cos}^{2} \theta } } ) \\  \\  \implies \: y =  { \tan}^{ - 1} ( \frac{ \cos \theta}{ \sin \theta} ) \\  \\  \implies \: y =   { \tan}^{ - 1} ( \cot \theta) \\  \\  \implies \: y =  {tan}^{ - 1} (  \tan( \frac{\pi}{2}  -  \theta)) =  \frac{\pi}{2}  -  \theta

Now For Z

 \implies \: z =  { \sec}^{ - 1} ( \frac{1}{2 { \cos}^{2} \theta - 1 } ) \\  \\  \implies \: z =  { \sec}^{ - 1} ( \frac{1}{ \cos \: 2 \theta} ) \\  \\  \implies \: z =  { \sec}^{ - 1} ( \sec  \: 2 \theta) = 2 \theta

we get :

y \:  =   \frac{\pi}{2}  -  \frac{1}{2} .z \\

Now Differentiate w.r.t Z :

 \implies \:  \frac{dy}{dz}  =  \frac{d}{dz} ( \frac{\pi}{2}  -  \frac{1}{2} z) \\  \\  \implies \:  \frac{dy}{dz}  = 0 -  \frac{1}{2}  \\  \\  \implies \:  \frac{dy}{dz}  =  -  \frac{1}{2}  \\

Formula:

 \star \:  \cos \: 2x = 2 \cos ^{2} x - 1 \\  \\  \star \:  { \tan}^{ - 1} ( \tan \: x) = x \\  \\  \star \:  { \sec}^{ - 1} (  \sec \: x) = x

Answered by Anonymous
9

check the attachment........:)

Attachments:
Similar questions