Math, asked by twinklehanda, 4 months ago

PLS SOLVE THIS INTEGRATION QUESTION ​

Attachments:

Answers

Answered by Anonymous
8

 \bf \: we \: have \:

 \sf \to \:  \int \bigg( \dfrac{ - 6}{ {x}^{3} }  +  \dfrac{6}{ {x}^{4} }  \bigg)dx \\

 \bf \: We \:  This \:  identities \:  of \:  Intergration </p><p>

  \sf \to\int(a \pm \: b)dx =  \int(a)dx \pm \int(b)dx \\

 \bf \: Now

 \sf \to \:  \int \bigg( \dfrac{ - 6}{ {x}^{3} } \bigg)dx  +    \int\bigg(\dfrac{6}{ {x}^{4} }  \bigg)dx \\

 \sf \to \:  - 6 \int \bigg( \dfrac{ 1}{ {x}^{3} } \bigg)dx  +    6\int\bigg(\dfrac{1}{ {x}^{4} }  \bigg)dx \\

 \sf \to \:  - 6 \int( {x}^{ - 3} )dx + 6 \int(x {}^{ - 4} )dx \\

 \sf \to- 6  \bigg(\dfrac{ x {}^{ - 3 + 1} }{ - 3 + 1}  \bigg) + 6 \bigg( \dfrac{ {x}^{ - 4 + 1} }{ - 4 + 1}  \bigg) + c

 \sf \to \:  - 6 \bigg(  \dfrac{ - x {}^{ - 2} }{2}  \bigg)  -  6 \bigg( \dfrac{ {x}^{ - 3} }{3}  \bigg) + c

  \sf \to \:  \dfrac{6}{2 {x}^{2} }   -  \dfrac{6}{3 {x}^{3} }  + c

 \sf \to \:   \dfrac{3}{ {x}^{2} }  -  \dfrac{2}{ {x}^{3} }  + c

 \bf \: Answer

\sf \to \:   \dfrac{3}{ {x}^{2} }  -  \dfrac{2}{ {x}^{3} }  + c

Similar questions