Math, asked by rajusinghrajput00045, 1 month ago

pls solve this limts question​

Attachments:

Answers

Answered by Anonymous
3

Given

 \to \displaystyle \lim _{  \tt \: x \to3 } \tt \dfrac{ {x}^{2}  - 5x + 6}{ {x}^{2}  - 9}

Now Check the form so we put x = 3 on Given equation

 \tt \to \dfrac{(3)^{2}  - 5 \times 3 + 6}{(3)^{2} - 9 }

 \tt \to \:  \dfrac{9 - 15 + 6}{9 - 9}

 \tt \to \dfrac{15 - 15}{0}  =  \dfrac{0}{0}

So it is 0/0 form , we use simplification method

\to \displaystyle \lim _{  \tt \: x \to3 } \tt \dfrac{ {x}^{2}  - 5x + 6}{ {x}^{2}  -  {3}^{2} }

Using this identities

 \tt \to \: (a {}^{2}  - b {}^{2} ) = (a - b)(a + b)

we get

 \to \displaystyle \lim _{  \tt \: x \to3 } \tt \dfrac{ {x}^{2}  - 5x + 6}{ ({x}- 3)(x + 3)}

 \to \displaystyle \lim _{  \tt \: x \to3 } \tt \dfrac{ {x}^{2}  - 2x - 3x + 6}{ ({x}- 3)(x + 3)}

\to \displaystyle \lim _{  \tt \: x \to3 } \tt \dfrac{ x({x}  - 2)- 3(x  -  2)}{ ({x}- 3)(x + 3)}

\to \displaystyle \lim _{  \tt \: x \to3 } \tt \dfrac{( x- 3)(x  -  2)}{ ({x}- 3)(x + 3)}

\to \displaystyle \lim _{  \tt \: x \to3 } \tt \dfrac{ \cancel{( x- 3)}(x  -  2)}{ \cancel{ ({x}- 3)}(x + 3)}

\to \displaystyle \lim _{  \tt \: x \to3 } \tt \dfrac{(x  -  2)}{(x + 3)}

\to \displaystyle  \tt \dfrac{(3  -  2)}{(3 + 3)}  =  \frac{1}{6}

Answer is 1/6

Answered by AbhinavRocks10
62

Step-by-step explanation:

Answer:

\displaystyle \boxed{{ \lim_{x \to 3} \frac{x^2+2x-15}{x^2-5x+6} =8}}

Step-by-step explanation:

Given :

\displaystyle\boxed{ \lim_{x \to 3} \frac{x^2+2x-15}{x^2-5x+6} }

On solving it further :

\begin{gathered}\displaystyle\boxed{ \lim_{x \to 3} \frac{x^2+2x-15}{x^2-5x+6} }\\\\\\\boxed\displaystyle{\rightarrow \lim_{x \to 3} \frac{x^2+5x-3x-15}{x^2-3x-2x+6} }\\\\\\\displaystyle{\rightarrow \lim_{x \to 3} \frac{x(x+5)-3(x+5)}{x(x-3)-2(x-3)} }\\\\\\\displaystyle{\rightarrow \lim_{x \to 3} \frac{(x-3)(x+5)}{(x-3)(x-2)} }\end{gathered}

Here ( x - 3 ) get cancel out we get :

\displaystyle\boxed{\rightarrow \lim_{x \to 3} \frac{(x+5)}{(x-2)} }

Now putting x = 3

Now putting x = 3

\begin{gathered}\displaystyle{\rightarrow \lim_{x \to 3} \frac{(x+5)}{(x-2)} }\\\\\\\displaystyle{\implies \frac{3+5}{3-2} }\\\\\\\displaystyle {\implies 8}\end{gathered}

Similar questions