Math, asked by kapoorchanchala, 2 months ago

Pls solve this
options are
1/2
0
2
1​

Attachments:

Answers

Answered by tulasakapri13942
0

Answer:

00⁰00000000000⁰0000⁰0000⁰0000⁰000000000⁰00000⁰0000000

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a + b + c = 0

On squaring both sides, we get

\rm :\longmapsto\: {(a + b + c)}^{2} = 0

\rm :\longmapsto\: {a}^{2} + {b}^{2} +  {c}^{2}  + 2ab + 2bc + 2ca = 0

\rm :\longmapsto\: {a}^{2} + {b}^{2} +  {c}^{2} =  - 2(ab + bc + ca )

On squaring both sides, we get

\rm :\longmapsto\: ({a}^{2} + {b}^{2} +  {c}^{2} )^{2} =  4(ab + bc + ca )^{2}

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4} + 2 {a}^{2} {b}^{2}   + 2 {b}^{2} {c}^{2} + 2 {c}^{2} {a}^{2} =   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \rm \: 4\bigg( {a}^{2} {b}^{2} +  {b}^{2} {c}^{2} +  {c}^{2} {a}^{2} + 2(ab)(bc) + 2(bc)(ca) + 2(ca)(ab)\bigg)

\boxed{ \sf{ \: \because \:  {(a + b + c)}^{2} =  {a}^{2} +  {b}^{2} +  {c}^{2} + 2ab + 2bc + 2ca}}

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4} + 2 {a}^{2} {b}^{2}   + 2 {b}^{2} {c}^{2} + 2 {c}^{2} {a}^{2} =   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \rm \: 4\bigg( {a}^{2} {b}^{2} +  {b}^{2} {c}^{2} +  {c}^{2} {a}^{2} + 2( {b}^{2} ac) + 2( {c}^{2} ba) + 2( {a}^{2} cb)\bigg)

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4} + 2 {a}^{2} {b}^{2}   + 2 {b}^{2} {c}^{2} + 2 {c}^{2} {a}^{2} =   \:  \:  \:  \:  \:  \:  \:  \:  \:\: \\  \rm \: 4\bigg( {a}^{2} {b}^{2} +  {b}^{2} {c}^{2} +  {c}^{2} {a}^{2} + 2abc(a + b + c)\bigg)

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4} + 2 {a}^{2} {b}^{2}   + 2 {b}^{2} {c}^{2} + 2 {c}^{2} {a}^{2} = \\  \rm \: 4\bigg( {a}^{2} {b}^{2} +  {b}^{2} {c}^{2} +  {c}^{2} {a}^{2} + 2abc(0)\bigg)  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{ \: \because \: a + b + c = 0}}

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4} + 2 {a}^{2} {b}^{2}   + 2 {b}^{2} {c}^{2} + 2 {c}^{2} {a}^{2} =   \:  \:  \:  \:  \:  \:  \:  \:  \:\: \\  \rm \: 4\bigg( {a}^{2} {b}^{2} +  {b}^{2} {c}^{2} +  {c}^{2} {a}^{2} \bigg)

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4} + 2 {a}^{2} {b}^{2}   + 2 {b}^{2} {c}^{2} + 2 {c}^{2} {a}^{2} =\\  \rm \: 4 {a}^{2} {b}^{2} +4{b}^{2} {c}^{2} +  4{c}^{2} {a}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4}  = 2 {a}^{2} {b}^{2}   + 2 {b}^{2} {c}^{2} + 2 {c}^{2} {a}^{2}

\rm :\longmapsto\: {a}^{4} +  {b}^{4} +  {c}^{4}  = 2 ({a}^{2} {b}^{2} +{b}^{2} {c}^{2} +{c}^{2} {a}^{2})

\bf\implies \: \dfrac{ {a}^{2} {b}^{2}  +  {b}^{2}  {c}^{2}  +  {c}^{2} {a}^{2} }{ {a}^{4}   +  {b}^{4}  +  {c}^{4} }  = \dfrac{1}{2}

Additional Information :-

\boxed{ \sf{ \:(a + b)^{2}  =  {a}^{2} + 2ab +  {b}^{2}}}

\boxed{ \sf{ \:(a  -  b)^{2}  =  {a}^{2}  -  2ab +  {b}^{2}}}

\boxed{ \sf{ \:(a + b)^{3}  =  {a}^{3} + {b}^{3} + 3ab(a + b)}}

\boxed{ \sf{ \:(a  -  b)^{3}  =  {a}^{3}  -  {b}^{3}  -  3ab(a  -  b)}}

\boxed{ \sf{ \: {(a + b)}^{2} =  {(a - b)}^{2}  + 4ab}}

\boxed{ \sf{ \: {(a  -  b)}^{2} =  {(a  +  b)}^{2}   -  4ab}}

Similar questions