Math, asked by anish9740, 1 year ago

pls solve this pls pls

releted with complex numbers​

Attachments:

Answers

Answered by saurabhsemalti
1

Answer:

(x + iy) {}^{ \frac{1}{3} }  = a + ib \\ cubing \: both \: sides \\ x + iy = (a + ib) {}^{3}  \\ expanding \: rhs \\ a {}^{3}  - b {}^{3} i + 3 {a}^{2} bi - 3a {b}^{2}  \\  = (a {}^{3}  - 3a {b}^{2} ) + i(3 {a}^{2} b - b {}^{3} ) \\ comparing \: real \: and \: img \: parts \\ x = a {}^{3}  - 3a {b}^{2}  ......(1)\\ y = 3a {}^{2} b - b  {}^{3} .....(2)\\ we \: need \: to \: prove \:  \\  \frac{x}{a}  +  \frac{y}{b}  = 4( {a}^{2}  -  {b}^{2} ) \\ expanding \: lhs \: with \: the  \\ \: help \: of \: eqn \: (1)and(2) \\  \frac{ {a}^{3} - 3a {b}^{2}  }{a}  +  \frac{3 {a}^{2} b - b {}^{3} }{b}  \\  =  {a}^{2}  - 3 {b}^{2}  + 3 {a}^{2}  -  {b}^{2}  \\  = 4( {a}^{2}  -  {b}^{2} )

hence, proved.

Mark as brainliest if helped

Similar questions