pls solve this Q.
THe infinite sum 1 + 4/7 + 9/7^2 + 16/7^3 + 25/7^4 + -----equals.
A)27/14
B)21/13
C)49/27
D)256/147
pls give me the soln to solve this Q.
Answers
Answered by
8
Let
S = 1+4/7+9/7^2+16/7^3+………………..∞ (1)
S/7 = 1/7+4/7^2+9/7^3+16/7^4+……………. ∞ (2)
(1)-(2)=6S/7 =1+3/7+5/7^2+7/7^3+……………∞ (3)
6S/7 =1+3/7+5/7^2+7/7^3+……………∞ (4)
6S/7^2= 1/7+3/7^2+5/7^3+…………….∞ (5)
(4)-(5)= 36S/49=1+2/7+2/7^2+2/7^3+…………………∞ (6)
Now, 36S/49 = 1+2/7(1+1/7+1/7^2+……………..∞)
= 1+2/7(1/(1–1/7))= 1+2/7*7/6= 4/3
Therefore S = 49/27
S = 1+4/7+9/7^2+16/7^3+………………..∞ (1)
S/7 = 1/7+4/7^2+9/7^3+16/7^4+……………. ∞ (2)
(1)-(2)=6S/7 =1+3/7+5/7^2+7/7^3+……………∞ (3)
6S/7 =1+3/7+5/7^2+7/7^3+……………∞ (4)
6S/7^2= 1/7+3/7^2+5/7^3+…………….∞ (5)
(4)-(5)= 36S/49=1+2/7+2/7^2+2/7^3+…………………∞ (6)
Now, 36S/49 = 1+2/7(1+1/7+1/7^2+……………..∞)
= 1+2/7(1/(1–1/7))= 1+2/7*7/6= 4/3
Therefore S = 49/27
Answered by
5
The infinite sum 1 + 4/7 + 9/7^2 + 16/7^3 + 25/7^4 + -----equals to C)49/27.
Step-by-step explanation:
Given:
[1]
multiplying equation 1 by 7,
[2]
Subtracting eq 1 from eq 2, we get,
[3]
multiplying eq 3 by 7,
[4]
subtracting eq 3 from eq 4 we get,
[Here the term are forming GP]
Similar questions