Math, asked by sejal4855, 1 year ago

pls solve this que fast (32.que)

Attachments:

Answers

Answered by arjun6068
1

Answer:

Refer to a Proof given in the Explanation.

Explanation:

We know that, csc2θ=cot2θ+1.......(1).

(csc2θ)3=(cot2θ+1)3.

Since, (x+y)3=x3+y3+3xy(x+y),we have,

csc6θ=(cot2θ)3+13+3(cot2θ)(1)(cot2θ+1),

=cot6θ+1+3cot2θ(csc2θ).......[∵,(1)],

⇒csc6θ=cot6θ+3cot2θcsc2θ+1.

Hence, the Proof.

ꃅꂦᖘꍟ ꀤ꓄ ꃅꍟ꒒ᖘꌗ ꌩꂦꀎ 

Similar questions