Pls solve this question
Attachments:
Answers
Answered by
1
Hi
Step 1 : Simplify —— x4 Equation at the end of step 1 : 1 1 1 1 (((x-—)•(x+—))•((x2)-————))•((x4)+——) 2 2 (x2) x4
Step 2 :
Rewrite the whole as a fraction using x4 as the denominator :
x4 x4 • x4 x4 = —— = ——————— 1 x4Step2.2 :- x4 • x4 + 1 x8 + 1 ——————————— = —————— x4 x4 Equation at the end of step 2 : 1 1 1 (x8+1) (((x-—)•(x+—))•((x2)-————))•—————— 2 2 (x2) x4
Step 3
Simplify —— x2 Equation at the end of step 3 : 1 1 1 (x8+1) (((x-—)•(x+—))•((x2)-——))•—————— 2 2 x2 x4
Step 4.1 :
Rewrite the whole as a fraction using x2 as the denominator : x2 x2 • x2 x2 = —— = ——————— 1 x2
step4.2
Adding fractions that have a common denominator : 4.2 Adding up the two equivalent fractions
x2 • x2 - (1) x4 - 1 ————————————— = —————— x2 x2 Equation at the end of step 4 : 1 1 (x4-1) (x8+1) (((x-—)•(x+—))•——————)•—————— 2 2 x2 x4 sTEp 5
Step 5 : 1 Simplify — 2 Equation at the end of step 5 : 1 1 (x4-1) (x8+1) (((x-—)•(x+—))•——————)•—————— 2 2 x2 x4
Step6:-
Rewriting the whole as an Equivalent Fraction : 6.1 Adding a fraction to a whole
Rewrite the whole as a fraction using 2 as the denominator : x x • 2 x = — = ————— 1 2 Adding fractions that have a common denominator : 6.2 Adding up the two equivalent fractions
x • 2 + 1 2x + 1 ————————— = —————— 2 2 Equation at the end of step 6 : 1 (2x+1) (x4-1) (x8+1) (((x-—)•——————)•——————)•—————— 2 2 x2 x4 Step 7 : 1 Simplify — 2 Equation at the end of step 7 : 1 (2x + 1) (x4 - 1) (x8 + 1) (((x - —) • ————————) • ————————) • ———————— 2 2 x2 x4 Step 8 :Rewriting the whole as an Equivalent Fraction : 8.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using 2 as the denominator : x x • 2 x = — = ————— 1 2 Adding fractions that have a common denominator : 8.2 Adding up the two equivalent fractions
x • 2 - (1) 2x - 1 ——————————— = —————— 2 2 Equation at the end of step 8 : (2x - 1) (2x + 1) (x4 - 1) (x8 + 1) ((———————— • ————————) • ————————) • ———————— 2 2 x2 x4 Step 9 :Equation at the end of step 9 : (2x - 1) • (2x + 1) (x4 - 1) (x8 + 1) (——————————————————— • ————————) • ———————— 4 x2 x4
Trying to factor as a Difference of Squares : 10.1 Factoring: x4-1
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 1 is the square of 1
Check : x4 is the square of x2
Factorization is : (x2 + 1) • (x2 - 1) Trying to factor as a Difference of Squares : 10.3 Factoring: x2 - 1
Check : 1 is the square of 1
Check : x2 is the square of x1
Factorization is : (x + 1) • (x - 1)
Equation at the end of step 10 : (2x-1)•(2x+1)•(x2+1)•(x+1)•(x-1) (x8+1) ————————————————————————————————•—————— 4x2 x4
______________
Multiplying exponential expressions : 11.2 x2 multiplied by x4 = x(2 + 4) = x6
Final result : (2x-1)•(2x+1)•(x2+1)•(x+1)•(x-1)•(x8+1) ——————————————————————————————————————— 4x6
Hope helped!
Similar questions