Math, asked by chaharsudesh1234, 6 months ago

pls solve this question​

Attachments:

Answers

Answered by mathdude500
2

Answer:

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}} \\

ydx - xdy =  \sqrt{ {x}^{2}  +  {y}^{2} } dx \\ ydx +  \sqrt{ {x}^{2} +  {y}^{2}  } dx = xdy \\ (y +  \sqrt{ {x}^{2}  +  {y}^{2} } )dx = xdy \\  \frac{dy}{dx}  =  \frac{(y +  \sqrt{ {x}^{2}  +  {y}^{2} } )}{x}  \\ \small\bold\red{put \: y \:  = vx} \\  \frac{d}{dx} vx =  \frac{vx +  \sqrt{ {x}^{2}  +  {v}^{2} {x}^{2}  } }{x}  \\ v \times 1 + x \frac{dv}{dx}  =  \frac{vx + x \sqrt{1 +  {v}^{2} } }{x}  \\ v + x \frac{dv}{dx}  = v +  \sqrt{1 +  {v}^{2} }  \\ x \frac{dv}{dx}  =  \sqrt{1 +  {v}^{2} }  \\ \small\bold\red{(on \: seperating \: the \: variables)} \\  \frac{dv}{ \sqrt{1 +  {v}^{2} } }  =  \frac{dx}{x}  \\ \small\bold\red{(on \: integrating \: both \: sides)} \\  log((v +  \sqrt{1 +  {v}^{2} } )  =  log(x)  +  log(c)  \\  =  >  \: v +  \sqrt{1 +  {v}^{2} }  = xc \\ \small\bold\red{(put \: v =  \frac{y}{x} )} \\  \frac{y}{x}   +  \sqrt{1 +  \frac{ {y}^{2} }{ {x}^{2} } }  = xc \\  \frac{y +  \sqrt{ {x}^{2} +  {y}^{2}  } }{x}  = xc \\ y +  \sqrt{ {x}^{2}  +  {y}^{2} }  = c {x}^{2}

Similar questions