Math, asked by suryakprasath, 4 months ago

Pls solve this question

Attachments:

Answers

Answered by fshumaila397
1

answer:-1

hope this helps u

Attachments:
Answered by Anonymous
6

Given :

\boxed{\bf\dfrac{4x+7}{9-3x}=\dfrac{1}{4}}

To Find :

The value of x.

Solution :

Analysis :

Here we have to solve the equation using suitable signs and identities.

Explanation :

\\ \Rightarrow\sf\dfrac{4x+7}{9-3x}=\dfrac{1}{4}

By cross multiplying,

\\ \Rightarrow\sf4(4x+7)=1(9-3x)

Expanding the brackets,

\\ \Rightarrow\sf16x+28=9-3x

Transposing -3x to LHS and 28 to RHS,

\\ \Rightarrow\sf16x+3x=9-28

After evaluation,

\\ \Rightarrow\sf19x=-19

\\ \Rightarrow\sf x=\dfrac{-19}{19}

\\ \Rightarrow\sf x=\cancel{\dfrac{-19}{19}}

\\ \Rightarrow\sf x=-1

\\ \therefore\boxed{\bf x=-1.}

The value of x is -1.

Verification :

LHS :

\\ \Rightarrow\sf\dfrac{4x+7}{9-3x}

  • Putting x = -1,

\\ \Rightarrow\sf\dfrac{4(-1)+7}{9-3(-1)}

\\ \Rightarrow\sf\dfrac{(4\times(-1))+7}{9-(3\times(-1))}

\\ \Rightarrow\sf\dfrac{-4+7}{9-(-3)}

\\ \Rightarrow\sf\dfrac{3}{9+3}

\\ \Rightarrow\sf\dfrac{3}{12}

\\ \Rightarrow\sf\cancel{\dfrac{3}{12}}

\\ \Rightarrow\sf\dfrac{1}{4}

\\ \therefore\boxed{\bf LHS=\dfrac{1}{4}}.

RHS :

\\ \therefore\boxed{\bf RHS=\dfrac{1}{4}}.

LHS = RHS.

  • Hence verified.
Similar questions