Math, asked by shagunjain25sept, 1 month ago

Pls solve this question ​

Attachments:

Answers

Answered by TYKE
26

Question :

 \sf If \: x +  \frac{1}{x}  = 2 , \: prove \:  that \:  {x}^{2}  +  \frac{1}{ {x}^{2}  }  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {x}^{4}  +  \frac{1}{ {x}^{4} }

Formula Used :

For x² + 1/x² we will use :

 \sf \looparrowright {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {(x +  \frac{1}{x}) }^{2}  - 2

For x³ + 1/x³ we will use :

 \sf \looparrowright {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(x +  \frac{1}{x}) }^{3} - 3(x +  \frac{1}{x}  )

For x⁴ + 1/x⁴ we will use :

 \sf \looparrowright {{x}^{4} +  \frac{1}{ {x}^{4}}} =  {( { {x}^{2} } +  \frac{1}{ {x}^{2} } )^{2} } - 2

GivEn Data :

x + 1/x = 2

Solution :

By applying the first formula we get

 \sf \leadsto {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {(x +  \frac{1}{x}) }^{2}  - 2

By putting 2 we get

 \sf \leadsto {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {(2) }^{2}  - 2

 \sf \leadsto {x}^{2}  +  \frac{1}{ {x}^{2} }  = 4 - 2

 \sf \leadsto {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2

Now, to apply the second formula :

\sf \leadsto {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(x +  \frac{1}{x}) }^{3} - 3(x +  \frac{1}{x}  )

 \sf \leadsto  {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(2) }^{3} - 3(2)

\sf \leadsto {x}^{3}  +  \frac{1}{ {x}^{3} }   = 8 - 6

 \sf \leadsto {x}^{3}  +  \frac{1}{ {x}^{3} }  = 2

Now to find the last one using the third formula :

 \sf \leadsto {{x}^{4} +  \frac{1}{ {x}^{4}}} =  {( { {x}^{2} } +  \frac{1}{ {x}^{2} } )^{2} } - 2

By putting the value we got in x² + 1/x² we get

\sf \leadsto {{x}^{4} +  \frac{1}{ {x}^{4}}} =  {( 2 )^{2} } - 2

 \sf \leadsto {x}^{4} +  \frac{1}{ {x}^{4} }   = 4 - 2

\sf \leadsto {{x}^{4} +  \frac{1}{ {x}^{4}}} =  2

So we got the values as

 \leadsto \boxed{ \sf  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2  }

\leadsto \boxed{ \sf  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 2}

 \leadsto \boxed{\sf  {{x}^{4} +  \frac{1}{ {x}^{4}}} =  2}

Hence, we got

 \sf \rarr   \red{{x}^{2}  +  \frac{1}{ {x}^{2}} } =   \blue{{x}^{3}  +  \frac{1}{ {x}^{3} }}  = \green{ {{x}^{4} +  \frac{1}{ {x}^{4}}} }=  \boxed{ \sf 2}

\mathcal{\underbrace{ \red{HENCE, \: PROVED}} }

KNOW MORE :

  • (a + b)² = a² + b² + 2ab

  • (a - b)² = a² + b² - 2ab

  • a² + b² = (a + b)² - 2ab

  • a² + b² = (a - b)² + 2ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)² - (a - b)² = 4ab

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a + b)³ = a³ - b³ - 3ab(a + b)

  • a³ - b³ = (a + b)³ + 3ab(a + b)

Regards

#BeBrainly

Similar questions