Math, asked by hariharan108, 1 year ago

pls solve this question

Attachments:

Answers

Answered by siddhartharao77
3

Answer:

Option(D)

Step-by-step explanation:

Given:[(\frac{a}{b})^{\sqrt{99}-\sqrt{97}}]^{\sqrt{99}+\sqrt{97}}

= [\frac{a}{b}]^{(\sqrt{99}-\sqrt{97})(\sqrt{99}+\sqrt{97})}

We know that (a-b)(a+b)= a² - b²

=[(\frac{a}{b})]^{99-97}

=[\frac{a}{b}]^2

= \boxed{\frac{a^2}{b^2}}

(or)

Given:((\frac{a}{b})^{\sqrt{99}-\sqrt{97}})^{\sqrt{99}+\sqrt{97}}

=((\frac{a}{b})^{3\sqrt{11}-\sqrt{97})}^{\sqrt{99}+\sqrt{97}}

=((\frac{a}{b})^{3\sqrt{11}-\sqrt{97}})^{3\sqrt{11}+\sqrt{97}}

=((\frac{a}{b})^{(3\sqrt{11}-\sqrt{97})(3\sqrt{11}+\sqrt{97})}

=(\frac{a}{b})^{(3\sqrt{11})^2 - (\sqrt{97})^2}

=(\frac{a}{b})^{99-97}

=(\frac{a}{b})^{2}

=\frac{a^2}{b^2}


Therefore, the answer is a²/b²


Hope it helps!

Similar questions