pls solve this question
Attachments:
Answers
Answered by
2
Given: (1/2 + √7) + (1/√7 + √10) + ... + (1/√28 + √31)
= (1/√4 + √7) + (1/√7 + √10) + ... + (1/√28 + √31)
On rationalizing, we get
= (1/√4+√7)*(√4-√7/√4-√7) + (1/√7+√10)*(√7-√10)/(√7-√10) + ... + (1/√28+√31)*(√28-√31/√28-√31)
= [(√4-√7/(√4)² - (√7)²] + [(√7-√10)/(√7)²-(√10)^2] + .. [(√28-√31)/(√28)²-(√31)²]
= [(√4 - √7)/4-7] + [(√7-√10)/7-10)] +...+ [(√28-√31/28-31)]
= (√4 - √7)/-3] + [(√7 - √10)/-3)] +... + [(√28 - √31)/-3]
= [(√7 - √4)/3] + [(√10 - √7)/3] + .... +[(√31-√28)]/3]
= 1/3[√7 - √4 + √10 - √7 + √31 - √28]
= 1/3[√31 - √4]
= √31 - √4/3
= (√31 - 2)/3.
Hope it helps!
Attachments:
hariharan108:
Thanks sir
Answered by
0
Answer:
4
Step-by-step explanation:
Answer is explained below.
Attachments:
Similar questions