pls solve this question
Attachments:
Answers
Answered by
2
Observe that
sin4θ+cos4θ=1−2sin2θcos2θ⟺sin4θ+cos4θ+2sin2θcos2θ=1sin4θ+cos4θ=1−2sin2θcos2θ⟺sin4θ+cos4θ+2sin2θcos2θ=1
which is always true since
sin4θ+cos4θ+2sin2θcos2θ=(sin2θ+cos2θ)2=12=1sin4θ+cos4θ+2sin2θcos2θ=(sin2θ+cos2θ)2=12=1
so the identity is proved.
I hope it will help you dear...
sin4θ+cos4θ=1−2sin2θcos2θ⟺sin4θ+cos4θ+2sin2θcos2θ=1sin4θ+cos4θ=1−2sin2θcos2θ⟺sin4θ+cos4θ+2sin2θcos2θ=1
which is always true since
sin4θ+cos4θ+2sin2θcos2θ=(sin2θ+cos2θ)2=12=1sin4θ+cos4θ+2sin2θcos2θ=(sin2θ+cos2θ)2=12=1
so the identity is proved.
I hope it will help you dear...
Answered by
2
sin4θ+cos4θ=1−2sin2θcos2θ⟺sin4θ+cos4θ+2sin2θcos2θ=1sin4θ+cos4θ=1−2sin2θcos2θ⟺sin4θ+cos4θ+2sin2θcos2θ=1
which is always true since
sin4θ+cos4θ+2sin2θcos2θ=(sin2θ+cos2θ)2=12=1sin4θ+cos4θ+2sin2θcos2θ=(sin2θ+cos2θ)2=12=1
which is always true since
sin4θ+cos4θ+2sin2θcos2θ=(sin2θ+cos2θ)2=12=1sin4θ+cos4θ+2sin2θcos2θ=(sin2θ+cos2θ)2=12=1
Similar questions