Math, asked by yashoshreesingh, 1 day ago

pls solve this question ASAP​

Attachments:

Answers

Answered by varadad25
3

Question:

If \displaystyle{\sf\:\sec\:\theta\:=\:\dfrac{3}{2}} , then the value of \displaystyle{\sf\:2\:\cos^2\:\theta\:+\:2\:\cot^2\:\theta\:-\:9} is

\displaystyle{\sf\:a)\:\dfrac{-\:91}{15}}

\displaystyle{\sf\:b)\:\dfrac{91}{15}}

\displaystyle{\sf\:c)\:\dfrac{44}{15}}

\displaystyle{\sf\:d)\:\dfrac{90}{44}}

Answer:

\displaystyle{\boxed{\red{\sf\:2\:\cos^2\:\theta\:+\:2\:\cot^2\:\theta\:-\:9\:=\:\dfrac{-\:293}{45}\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\sec\:\theta\:=\:\dfrac{3}{2}}

We know that,

\displaystyle{\boxed{\pink{\sf\:\cos\:\theta\:=\:\dfrac{1}{\sec\:\theta}\:}}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\dfrac{1}{\dfrac{3}{2}}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\dfrac{2}{3}}

\displaystyle{\implies\sf\:\cos^2\:\theta\:=\:\left(\:\dfrac{2}{3}\:\right)^2}

\displaystyle{\implies\sf\:\cos^2\:\theta\:=\:\dfrac{2^2}{3^2}}

\displaystyle{\implies\:\boxed{\blue{\sf\:\cos^2\:\theta\:=\:\dfrac{4}{9}\:}}}

Now, we know that,

\displaystyle{\boxed{\blue{\sf\:\sec^2\:\theta\:=\:1\:+\:\tan^2\:\theta\:}}}

\displaystyle{\implies\sf\:\tan^2\:\theta\:=\:\sec^2\:\theta\:-\:1}

\displaystyle{\implies\sf\:\tan^2\:\theta\:=\:\left(\:\dfrac{3}{2}\:\right)^2\:-\:1}

\displaystyle{\implies\sf\:\tan^2\:\theta\:=\:\dfrac{3^2}{2^2}\:-\:1}

\displaystyle{\implies\sf\:\tan^2\:\theta\:=\:\dfrac{9}{4}\:-\:1}

\displaystyle{\implies\sf\:\tan^2\:\theta\:=\:\dfrac{9\:-\:4}{4}}

\displaystyle{\implies\:\boxed{\orange{\sf\:\tan^2\:\theta\:=\:\dfrac{5}{4}\:}}}

We know that,

\displaystyle{\boxed{\green{\sf\:\cot\:\theta\:=\:\dfrac{1}{\tan\:\theta}\:}}}

\displaystyle{\implies\sf\:\cot^2\:\theta\:=\:\dfrac{1}{\tan^2\:\theta}}

\displaystyle{\implies\sf\:\cot^2\:\theta\:=\:\dfrac{1}{\dfrac{5}{4}}}

\displaystyle{\implies\:\boxed{\purple{\sf\:\cot^2\:\theta\:=\:\dfrac{4}{5}\:}}}

Now, we have to find the value of

\displaystyle{\sf\:2\:\cos^2\:\theta\:+\:2\:\cot^2\:\theta\:-\:9}

\displaystyle{\implies\sf\:2\:\times\:\dfrac{4}{9}\:+\:2\:\times\:\dfrac{4}{5}\:-\:9}

\displaystyle{\implies\sf\:\dfrac{8}{9}\:+\:\dfrac{8}{5}\:-\:9}

\displaystyle{\implies\sf\:\dfrac{8\:\times\:5\:+\:8\:\times\:9}{9\:\times\:5}\:-\:9}

\displaystyle{\implies\sf\:\dfrac{40\:+\:72}{45}\:-\:9}

\displaystyle{\implies\sf\:\dfrac{112}{45}\:-\:9}

\displaystyle{\implies\sf\:\dfrac{112\:-\:9\:\times\:45}{45}}

\displaystyle{\implies\sf\:\dfrac{112\:-\:405}{45}}

\displaystyle{\implies\sf\:\dfrac{-\:293}{45}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:2\:\cos^2\:\theta\:+\:2\:\cot^2\:\theta\:-\:9\:=\:\dfrac{-\:293}{45}\:}}}}

Similar questions