Math, asked by swayamkanoje1969, 1 month ago

pls solve this question correctly and give me step by step explanation​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

x = t +  \cot(t) \\ and  y=\sin(t)

Now,

 \frac{dx}{dt}  = 1 -  \cosec^{2} (t)  \\

And,

 \frac{dy}{dt}  =  \cos(t)  \\

Now,

 \frac{dy}{dx}  =  \frac{ \dfrac{dy}{dt} }{ \dfrac{dx}{dt} }  = \frac{ \cos(t) }{1 -  \cosec^{2} (t) }   \\

  \implies\frac{dy}{dx}  = \frac{ \cos(t)  \sin ^{2} (t) }{  \sin^{2} (t) - 1 }   \\

  \implies\frac{dy}{dx}  = \frac{ \cos(t)  \sin ^{2} (t) }{   - \cos^{2} (t) }   \\

  \implies\frac{dy}{dx}  = \frac{  \sin ^{2} (t) }{   - \cos (t) }   \\

  \implies\frac{dy}{dx}  = \frac{  \sin (t) }{   - \cos (t) } . \sin(t)   \\

  \implies\frac{dy}{dx}   =  -  \tan(t)  . \sin(t)   \\

  \implies\frac{d^{2} y}{dx^{2} }   =  -  \frac{d}{dx}   \{\tan(t)  . \sin(t)    \}\\

  \implies\frac{d^{2} y}{dx^{2} }   =  -    \{\sec^{2} (t)  . \sin(t)  +  \tan(t)   \cos(t)   \}. \frac{dt}{dx} \\

  \implies\frac{d^{2} y}{dx^{2} }   =  -    \{\sec^{2} (t)  . \sin(t)  +   \sin(t)    \}.  \frac{1}{1 -  \cosec ^{2} (t) }  \\

  \implies\frac{d^{2} y}{dx^{2} }   =  -     \frac{\sec^{2} (t)  . \sin(t)  +   \sin(t)     }{1 -  \cosec ^{2} (t) }  \\

  \implies\frac{d^{2} y}{dx^{2} }   =  -     \frac{ \sin(t)  \{\sec^{2} (t)    +   1 \}    }{1 -  \cosec ^{2} (t) }  \\

  \implies\frac{d^{2} y}{dx^{2} }   =  -     \frac{ \sin(t). \sin^{2} (t)   \{\sec^{2} (t)    +   1 \}    }{ \sin ^{2} (t)  - 1}  \\

  \implies\frac{d^{2} y}{dx^{2} }   =     \frac{ \sin(t). \sin^{2} (t)   \{\sec^{2} (t)    +   1 \}    }{1 -  \sin ^{2} (t)  }  \\

  \implies\frac{d^{2} y}{dx^{2} }   =     \frac{ \sin(t). \sin^{2} (t)   \{\sec^{2} (t)    +   1 \}    }{  \cos^{2} (t)  }  \\

  \implies\frac{d^{2} y}{dx^{2} }   =     \frac{ \sin(t). \sin^{2} (t)   \{1 + \cos^{2} (t)     \}    }{  \cos^{4} (t)  }  \\

  \implies\frac{d^{2} y}{dx^{2} }   =     \frac{\sin^{3} (t)   \{1 + \cos^{2} (t)     \}    }{  \cos^{4} (t)  }  \\

  \implies\frac{d^{2} y}{dx^{2} }   =     \tan^{3} (t)   \sec(t)  \{1 + \cos^{2} (t)     \}    \\

  \implies\frac{d^{2} y}{dx^{2} }   =     \tan^{3} (t)   \sec(t)  + \tan ^{3} (t)  \cos(t)     \}    \\

Similar questions