Math, asked by Anonymous, 9 months ago

pls solve this question! No spammers please . Please don't be greedy for 50 points . earn it with a correct explanation . Best explanation will be marked brainliest . I NEED A STEP BY STEP EXPLANATION PLEASE. ​ class 11. This is an MCQ question ​

Attachments:

Answers

Answered by Ҡαηнα
2

answer on my attachment

 </p><p></p><p>&lt;svg class="heart" viewBox="-2-2 98.6 90.81"&gt;</p><p></p><p>&lt;title&gt;Corazon&lt;/title&gt;</p><p></p><p>&lt;text x=8 y=22 dx="0 0 0 0 0 0 0" dy="2-8-2 -1  1 2 4"style ="font:bold.4em arial; fill : blue;"&gt; tagsurajityo </p><p></p><p>&lt;tspan x=60 y=22 style="font: bold.7em arial; fill: blue;"&gt; &lt;/tspan&gt;</p><p></p><p>&lt;tspan x=10 dy=15 style ="font: bold. 6em arial; fill: navy;"&gt; &lt;/tspan&gt;</p><p></p><p>&lt;tspan x=25 dy=10 style ="font:bold. 6em arial; fill: red;"&gt;Follow Me&lt;/tspan&gt;</p><p></p><p>&lt;tspan x=35 dy=10 style ="font:bold. 6em arial; fill: navy;"&gt; &lt;/tspan&gt;</p><p></p><p>&lt;tspan x=37 dy=10 style ="font:bold. 5em arial; fill: navy;"&gt;♡♡&lt;/tspan&gt;</p><p></p><p>&lt;animate attibuteType="XML"</p><p>attributeName="visibility"from="visible" to="hidden"dur="9.2s" begin="0s"/&gt;</p><p></p><p>&lt;/text&gt;</p><p>&lt;path stoke="firebrick" stroke-width="3" d="M86.81,8.1 5a27.79v,0, 0, 1,0, 39.33L47.48,86.81,8.15,47.48A27.81,27.81,0,0,1,47.48,8.15,27.79,27.79,0,0,1,86.81,8.1 5Z"/&gt;</p><p></p><p>&lt;/avg&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>body {</p><p></p><p>display: grid;</p><p></p><p>min-height: 100vh;</p><p></p><p>justify-content: center;</p><p></p><p>align-content:center;</p><p></p><p>background: repeating-linear-gradient(circle, white, red);</p><p></p><p>background: repeating-radial-gradient(circle,pink,skyblue,pink);</p><p></p><p>}</p><p></p><p>

Attachments:
Answered by Anonymous
3

Step-by-step explanation:

Answer:

hey!

the answer is in picture

Answer : To prove : tan A/1-cot A + cot A/1-tan A=1+tan A+cot A

taking L.H.S

= [ tan(A) / (1 - cot(A)) ] + [ cot(A) / (1 - tan(A) ) ]

= [ sin(A)/cos(A) / (1 - cos(A)/sin(A)) ] + [ cos(A)/sin(A) / (1 - sin(A)/cos(A) ) ]

{using tan x = sinx /cos x and cotx = cosx/sinx }

= [ sin(A)/cos(A) / (sin(A)/sin(A) - cos(A)/sin(A)) ] + [ cos(A)/sin(A) / (cos(A)/cos(A) - sin(A)/cos(A) ) ]

= [ sin(A)/cos(A) / (sin(A) - cos(A)) / sin(A) ] + [ ( cos(A)/sin(A) / ( cos(A) -sin(A) ) / cos(A) ) ]

= [ sin(A)sin(A) / cos(A)(sin(A) - cos(A)) ] + [ ( cos(A)cos(A) / sin(A)( cos(A) -sin(A) ) ]

=[ sin2(A) / cos(A)(sin(A) - cos(A)) ] + [ cos2(A) / -sin(A)( sin(A) - cos(A) ) ) ]

=[ sin2(A) / cos(A)(sin(A) - cos(A)) ] - [ cos2(A) / sin(A)( sin(A) - cos(A) ) ) ] ===> LCD

= [ sin2(A) sin(A) / cos(A)sin(A)(sin(A) - cos(A)) ] - [ cos2(A) cos(A) / sin(A)cos(A)( sin(A) - cos(A) ) ) ]

= [ sin3(A) / cos(A)sin(A)(sin(A) - cos(A)) ] - [ cos3(A) / sin(A)cos(A)( sin(A) - cos(A) ) ) ]

=[ sin3(A) - cos3(A) ] / [ sin(A)cos(A)( sin(A) - cos(A) ) ) ]

=[ (sin(A) - cos(A)) ( sin2(A) + sin(A) cos(A) + cos2(A) ) ] / [ sin(A)cos(A)( sin(A) - cos(A) ) ) ]

= [ ( sin2(A) + cos2(A) + sin(A) cos(A) ] / [ sin(A)cos(A) ]

= [ sin2(A) / sin(A)cos(A) ] + [ cos2(A) / sin(A)cos(A) ] + [ sin(A) cos(A) / sin(A) cos(A) ]

= [ sin(A) / cos(A) ] + [ cos(A) / sin(A) ] + 1

= tan(A) + cot(A) + 1

{we know sin x/ cos x = tan x and cos x/sin x = cot x }

= R. H . S

Hence proved

Similar questions