Pls solve this question with all the steps
Attachments:
Answers
Answered by
1
Step-by-step explanation:
From figure:
In ΔAOB & ΔCOB,
OA = OC
AB = BC {Since ABCD is a rhombus}
OB = OB
∴ ΔAOB ≅ ΔCOB
⇒ ∠AOB = ∠BOC ----- (i)
∴ ΔAOD ≅ ΔCOD
⇒ ∠AOD = ∠COD ----- (ii)
Now,
⇒ ∠AOB + ∠BOC + ∠COD + ∠AOD = 360°
⇒ ∠BOC + ∠BOC + ∠COD + ∠COD = 360° {From (i),(ii)}
⇒ 2∠BOC + 2∠COD = 360°
⇒ ∠BOC + ∠COD = 360°/2
⇒ ∠BOC + ∠COD = 180°
⇒ ∠DOB = 180°
Therefore, DOB is a straight line.
Hope it helps!
Attachments:
000stefimaria000:
Thank you so much!
Similar questions