Math, asked by Shamikbrily344, 5 hours ago

Pls solve this questions. ​

Attachments:

Answers

Answered by tanmaybhamare502
1

Answer:

qwdhkoyffrdddsaasfuklojgffghjhvde

Answered by isha00333
0

Part b)

Solve the given equation to find the value of x.

\[\frac{3}{7}\left( {7x - 1} \right) - 2x - \frac{{\left( {1 - x} \right)}}{2} = x + \frac{3}{2}\]

\[ \Rightarrow 3x - \frac{3}{7} - 2x - \left( {\frac{{1 - x}}{2}} \right) = x + \frac{3}{2}\]

\[ \Rightarrow x - \frac{3}{7} - \frac{1}{2} + \frac{x}{2} = x + \frac{3}{2}\]

\[ \Rightarrow \frac{x}{2} = \frac{3}{2} + \frac{3}{7} + \frac{1}{2}\]

\[ \Rightarrow \frac{x}{2} = \frac{{21 + 6 + 7}}{{14}}\]

\[ \Rightarrow \frac{x}{2} = \frac{{34}}{{14}}\]

\[ \Rightarrow x = 36\]

Hence, the value of x is 36.

Part c)

Draw the required figure.

Let at point B, the pole breaks down and touches the ground and \[BC = x\].

Therefore, \[ \Rightarrow AB = BC = 81 - x\] and \[CD = 27cm\].

Understand that from the Pythagoras theorem,

\[\begin{array}{l}B{D^2} = C{D^2} + B{C^2}\\ \Rightarrow {\left( {81 - x} \right)^2} = {27^2} + {x^2}\\ \Rightarrow 6561 + {x^2} - 162x = 729 + {x^2}\\ \Rightarrow 6561 - 729 = 162x\end{array}\]

\[\begin{array}{l} \Rightarrow 5832 = 162x\\ \Rightarrow x = \frac{{5832}}{{162}}\\ \Rightarrow x = 36\,m\end{array}\]

Find the area of the triangle formed by the broken pole.

Area of the triangle\[ = \frac{1}{2} \times base \times height\]

                                \[\begin{array}{l} = \frac{1}{2} \times 27 \times 36\\ = 486\,{m^2}\end{array}\]

Hence, the area formed by the broken pole is \[486\,{m^2}\].                    

Attachments:
Similar questions