Math, asked by rahulsarmah505, 10 months ago

pls solve this tennetiraj86 pls I want the answer by today​

Attachments:

Answers

Answered by amitkumar44481
16

To ProvE :

 \tt \:  \:  \:  \:  \: \dagger{\bigg( {x}^{2}  +  {y}^{2}  \bigg)}^{2}   =  \dfrac{ {a }^{2}  + {b }^{2}}{{c}^{2} + {d }^{2} }

SolutioN :

 \tt \dagger \:  \:  \:  \:  \: If  \: x + iy =  \sqrt{ \dfrac{a+ib}{c+id} } ,then

 \tt  prove \: that \: \Big(x^2+y^2\Big)=  \dfrac{a^2+b^2}{c^2+d^2}

 \tt   : \implies  x + iy =  \sqrt{ \dfrac{a+ib}{c+id} }\: \: \: \: \: - ( 1 )

Taking Bar both sides.

 \tt   : \implies  \overline{x + iy} =  \sqrt{ \dfrac{ \overline{a+ib}}{  \overline{c+id}} }\: \: \: \: \: -( 2 )

✎ Now, Multiple Equation ( 1 ) and ( 2 )

 \tt   : \implies x + iy \times{x  -  iy} =  \sqrt{ \dfrac{ \overline{a+ib}}{ \overline{c+id}} } \times \sqrt{ \dfrac{ a+ib}{ c+id} }

 \tt   : \implies {x}^{2}  -  {i^2y}^{2}  =  \sqrt{ \dfrac{\overline{a+ib}}{\overline{c+id}} } \times \sqrt{ \dfrac{ a+ib}{ c+id} }

 \tt   : \implies {x}^{2}  -  {i^2y}^{2}  =  \sqrt{ \dfrac{ (a - ib)(a + ib)}{( c- id)(c +id)}}

 \tt   : \implies {x}^{2}  +  {y}^{2}  =  \sqrt{ \dfrac{ {a }^{2}  - {(ib) }^{2}}{{c}^{2} -{(id) }^{2} }}

✎ Now, Squaring Both sides We get,

 \tt   : \implies{  \bigg( {x}^{2}  +  {y}^{2}  \bigg)}^{2}   =  \dfrac{ {a }^{2}  + {b }^{2}}{{c}^{2} + {d}^{2} }

Hence Proved.

\rule{200}3

MorE InformatioN :

  • ( a + b )( a - b ) = a² - b².
  • ( i )² = - 1.

Z = a + bi

Where as,

  • Z ( Complex number )
  • a ( real number )
  • b ( imaginary number )

Vamprixussa: Awesome !
amitkumar44481: Thanks :-)
shadowsabers03: Great!
amitkumar44481: Thanks Bhai :-)
BloomingBud: Amazing!
amitkumar44481: Thanks :-)
Answered by Anonymous
6

The answer refers to attatchment

Attachments:
Similar questions