Physics, asked by khushi9570, 1 day ago

Pls solve this
The figure represents F/x graph
Find work done to move a body from A to B under action of variable force
Pls ans this​

Attachments:

Answers

Answered by SparklingThunder
3

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

The figure represents Force - Displacement graph . Find work done to move a body from A to B under action of variable force .

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

Work Done = - 4π J

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

The body moves from A to B .

Radius of semicircle = 4 cm

Radius of quadrant = 4 cm

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

Work done to move body from A to B under action of variable force .

\green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \purple{ \boxed{ \begin{array}{l}  \bigstar \: \textsf{Work Done = Fs} \:  \\ \\    \hline \\ \bigstar \: \textsf{Area of semicircle = $ \displaystyle \sf \frac{\pi {r}^{2}}{2}  $}   \\ \\   \hline \\\bigstar \: \textsf{Area of quadrant = $ \displaystyle \sf \frac{\pi {r}^{2}}{4}  $} \end{array}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

We know that area under force - displacement graph gives work done . Therefore ,

  \red{\textsf{ \underline{\underline{Area of semicircle OA : }}}}

\textsf{Area of semicircle = $ \displaystyle \sf \frac{\pi {r}^{2}}{2}  $}

  \displaystyle \sf \longrightarrow  \frac{\pi {(4)}^{2} }{2}  \: \:   \:   \\  \\ \displaystyle \sf \longrightarrow \frac{\pi \times 16}{2}  \:  \\  \\ \displaystyle \sf \longrightarrow \frac{\pi \times  \cancel{16}}{ \cancel{2 }}  \: \\  \\ \displaystyle \sf \longrightarrow\pi \times 8 \:  \:  \:   \: \\  \\ \displaystyle \sf \longrightarrow8\pi \:  \:  \:  \:  \:  \:  \:  \:

  \red{\textsf{ \underline{\underline{Area of quadrant OB : }}}}

\textsf{Area of quadrant = $ \displaystyle \sf \frac{\pi {r}^{2}}{4}  $}

  \displaystyle \sf \longrightarrow  \frac{\pi {(4)}^{2} }{4}  \: \:   \:   \\  \\ \displaystyle \sf \longrightarrow \frac{\pi \times 16}{4}  \:  \\  \\ \displaystyle \sf \longrightarrow \frac{\pi \times  \cancel{16}}{ \cancel{4 }}  \: \\  \\ \displaystyle \sf \longrightarrow\pi \times 4 \:  \:  \:   \: \\  \\ \displaystyle \sf \longrightarrow4\pi \:  \:  \:  \:  \:  \:  \:  \:  \:

From figure , We see that body is moving from right to left . Therefore , Work done from A to O becomes negative . The work done from O to B is also negative but the quadrant is also negative . Therefore , negative signs cancel each other .

Work done = ( - 8π + 4π ) J

Work done = - 4π J

Hence , Work done to move body from A to B under action of variable force is -4π Joule .

\green{ \large \underline{ \mathbb{\underline{KNOW\:MORE: }}}}

  • Force

Force is the push or pull on an object with mass that causes it to change its velocity.

  • Displacement

Displacement is the shortest distance between initial and final position of the object .

  • Work Done

Work is said to be done by a force on an object only when the object moves in any direction except in the direction perpendicular to the force .

  • Joule

One joule is defined as the work done by one newton force in moving an object through a distance of one metre along the direction of applied force .

Attachments:
Similar questions