Math, asked by sanya55, 1 year ago

pls solve this trigonometry question

Prove the following

( cosx +  cosy) {}^{2}  + ( sinx -  siny) {}^{2}  = 4 \cos {}^{2}  \frac{x + y}{2}
Please answer

Answers

Answered by Anonymous
5
Hope this helps you ☺☺
Attachments:

sanya55: thanks for the awesome answer :-)
Anonymous: wlcm ☺
Answered by rohitkumargupta
4
\large{\mathbf{HELLO\:\: DEAR,}}

\mathit{WE \:\:KNOW \:\:THAT:-}<br /><br />\\ \\ \mathit{sinA - sinB = 2cos\frac{A + B}{2}sin\frac{A - B}{2}}

\mathit{cosA + cosB = 2cos\frac{A + B}{2}cos\frac{A - B}{2}}\\ \\ \mathit{PROVE\:\: THAT:-}<br /><br />\\ \\ \mathit{(cosx + cosy)^2 + (sinx - siny)^2 = 4cos^2\frac{x + y}{2}}\\ \\ \mathit{NOW,}<br /><br />\\ \\ \mathit{[2cos(\frac{x + y}{2})*cos(\frac{x - y}{2})]^2 + [2cos(\frac{x + y}{2})*sin(\frac{x - y}{2})]^2}

\mathit{[4cos^2(\frac{x + y}{2})* cos^2(\frac{x - y}{2}) + 4cos^2(\frac{x + y}{2})*sin^2(\frac{x - y}{2})]}

\mathit{[4cos^2(\frac{x + y}{2})]*[cos^2(\frac{x - y}{2}) + sin^2(\frac{x - y}{2})]}

 \mathit{4cos^2(\frac{x + y}{2}) * ( 1 ) }<br />\\ \mathit{\to\to\to\to\to\to\to\therefore\boxed{sin^2\theta + cos^2\theta = 1}}

\large{\mathbf{\underline{I\:\: HOPE\:\: ITS \:\:HELP\:\: YOU\:\: DEAR,\:\:<br />THANKS}}}

rohitkumargupta: :-)
sanya55: thanks a lot sir
Similar questions