Math, asked by samira641125, 2 days ago

pls solve
trigonometry​

Attachments:

Answers

Answered by rohitraout53
1

Answer:

  1. PQ/PR
  2. QR/PR
  3. PR^2
  4. PR^2/PR^2=1
  5. for last answer in given picture

Attachments:
Answered by user0888
6

\Large\boxed{\bf{Guide}}

\Large\textrm{Trigonometric Ratios}

"The ratio of two sides of a right triangle is called a trigonometric ratio."

Let's solve this later to learn some information.

\cdots\longrightarrow\boxed{\sin\theta=\dfrac{\rm{Opp.}}{\textrm{Hyp.}}}

\cdots\longrightarrow\boxed{\cos\theta=\dfrac{\rm{Adj.}}{\textrm{Hyp.}}}

\cdots\longrightarrow\boxed{\tan\theta=\dfrac{\rm{Opp.}}{\textrm{Adj.}}}

(Usually, we memorize it by calling SOH-CAH-TOA.)

\Large\boxed{\bf{Solution}}

\large\textrm{Components of $\triangle\rm{PQR}$: -}

\begin{aligned}&\textrm{$\overline{\rm{QR}}$: Adjacent}\\\\&\textrm{$\overline{\rm{PQ}}$: Opposite}\\\\&\textrm{$\overline{\rm{RP}}$: Hypotenuse}\end{aligned}

\Large\boxed{\bf{Answer}}

\sin\theta=\dfrac{\overline{\rm{PQ}}}{\overline{\rm{RP}}}\dots \rm{(I)}

\cos\theta=\dfrac{\overline{\rm{QR}}}{\overline{\rm{RP}}}\rm{\dots(II)}

\textrm{using Pythagoras theorem}

\overline{\rm{PQ}}^{2}+\overline{\rm{QR}}^{2}=\overline{\rm{PR}}^{2}

\textrm{dividing each term by $\overline{\rm{PR}}^{2}$}

\dfrac{\overline{\rm{PQ}}^{2}}{\overline{\rm{PR}}^{2}}+\dfrac{\overline{\rm{QR}}^{2}}{\overline{\rm{PR}}^{2}}=\dfrac{\overline{\rm{PR}}^{2}}{\overline{\rm{PR}}^{2}}

\left(\dfrac{\overline{\rm{PQ}}}{\overline{\rm{PR}}}\right)^{2}+\left(\dfrac{\overline{\rm{QR}}}{\overline{\rm{PR}}}\right)^{2}=1

\textrm{$\sin^{2}\theta+\cos^{2}\theta=1$, from I and II}

I hope this helped.

Similar questions