Math, asked by adbun9190, 9 days ago

Pls somebody answer this ques i am in desperate need!

Attachments:

Answers

Answered by kamalhajare543
67

Answer:

Solution:-

 \sf \implies\sf \:  \frac{3 {}^{3x}  \times 3 {}^{2x} }{3 {}^{x} }  =  \sqrt[4]{3 {}^{20} }  \\  \\ \sf \implies \frac{3 {}^{5x} }{5x}  =  \bigg(3 {}^{ \cancel{20}} {}^{ {}^{5} } \bigg) {}^{ \cancel{ \frac{1}{4}} }  \\  \\ \sf \implies \cancel3 {}^{4x}  =  \cancel3 {}^{5}  \\  \\ \sf \implies \: 4x = 5  \\  \\ \sf \implies\bold{  \red{x =  \frac{5}{4}}}

Hence This is Answer.

Answered by GraceS
23

\sf\huge\bold{Answer:}

Given :

 \tt\  \frac{3 {}^{3x } \times  {3}^{2x} }{ {3}^{x} }  =  \sqrt[4]{ {3}^{20} }   \\

To find :

Value of x

Solution :

 \tt{  \frac{3 {}^{3x } \times  {3}^{2x} }{ {3}^{x} }  =  \sqrt[4]{ {3}^{20} } }  \\

Formulas used :

\boxed{ \bf  \red{{a}^{m}  \times  {a}^{n} =  {a}^{m +  n}}  }

  \tt\boxed{ \bf \red{ {a}^{m} \div  {a}^{n}   =  \frac{a {}^{m} }{a {}^{n} } =  {a}^{m - n} } }

 \boxed{\bf \red{ \:  \sqrt[x]{y}  = (y) {}^{ \frac{1}{x} } } }

 \boxed{\bf \red{(a {}^{m})  {}^{n} = a {}^{m \times n}  }}

 :⟶ \: \tt\  \frac{ {3}^{3x + 2x} }{ {3}^{x} }  = ( {3}^{20} )  {}^{\frac{1}{4} }  \\

 \tt\ :⟶ \frac{3 {}^{5x} }{3 {}^{x} } = 3 {}^{ \frac{20}{4} }   \\

 \tt\ :⟶ 3 {}^{5x - x}  = 3 {}^{ \cancel \frac{20}{4} }  {}^{ \frac{5}{1} }  \\

 \tt\ :⟶ {3}^{4x}  =  {3}^{5}

Since, base are Same, powers can be compared separately.

 \implies \tt \: 4x = 5

 \implies  \tt \: x =  \frac{5}{4}  \\

Hence,

 \huge\boxed{  \tt \purple{x =  \frac{5}{4} }} \\

Similar questions