Math, asked by mani2786, 11 months ago

pls sove 11, 12, 13 and 14
50 points are there
dont spam​

Attachments:

Answers

Answered by ʙʀᴀɪɴʟʏᴡɪᴛᴄh
10

Answer:

\huge{\fbox{\fbox{\bigstar{\mathfrak{\red{Answer}}}}}}

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

11:- So first you have to distribute it.

ay . az . bz . by . bx . cx . cz . cx . cy

So cancel the Common ones

Answer: a x-z . b y-x . c z-y

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

<marquee>★᭄ꦿ᭄ꦿFOLLOW ME★᭄ꦿ᭄ꦿ<marquee>

Answered by umiko28
3

Answer:

➡➡your ans

 \bf\ 11:- So  \: first  \: you  \: have  \: to \:  distribute \:  it. \\  \\ </h2><h2></h2><h2> \bf\ ay . az . bz . by . bx . cx . cz . cx . cy \\  \\ </h2><h2></h2><h2> \bf\ So  \: cancel  \: the \:  Common  \: ones \:  \\  \\ </h2><h2></h2><h2> \bf\red{ Answer: a x-z . b y-x . c z-y}

\bf\   \hookrightarrow \: using \: formula \\  \\  \bf\red{ a)  \implies: {a}^{m} +  {a}^{n}    =  {a}^{m + n} }  \\  \\ \bf\green{b)   \implies: \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }  \\  \\  \\\bf\pink{ \underline{ c)  \implies:  { {a}^{m} }^{n} =  {a}^{m \times n}  } }\\  \\ \bf\ \: 12 ) \frac{ {x}^{2n + 3 }.  {x}^{(2n + 1)(n + 1)} }{ {x}^{  {3}^{(2n + 1)} }. {x}^{ {n}^{(2n + 1)} }  }  \\  \\  \bf\   \implies:  \frac{ {x}^{2n + 3 + (2n + 1)(n + 1)} }{ {x}^{6n + 3} . {x}^{ {2n}^{2} + n } } \\  \\ \bf\   \implies:  \frac{ {x}^{2n + 3 +  {2n}^{2} + 2n + n + 1 } }{ {x}^{6n + 3 +  {2n}^{2}  + n} }  \\  \\ \bf\   \implies:  \frac{ {x}^{ {2n}^{2} + 5n +  3 } }{ {x}^{ {2n}^{2}  + 7n + 3} }  \\  \\ \bf\   \implies:  {x}^{ {2n}^{2} + 5n + 3 -  {2n}^{2}  - 7n - 3 }  \\  \\ \bf\   \implies:  {x}^{ - 2n}

\bf\  13)\frac{ {a}^{7 + 2n}. {a}^{ {2}^{(3n + 2)}} }{  {a}^{ {4}^{(2n + 3)} } }  \\  \\ \bf\   \implies:  \frac{ {a}^{7 + 2n} . {a}^{6n + 4} }{ {a}^{8n + 13} }  \\  \\ \bf\   \implies:   \frac{ {a}^{(7 + 2n) + (6n + 4)} }{ {a}^{8n + 13} }  \\  \\ \bf\   \implies:  {a}^{7 + 2n + 6n + 4 - 8n - 13}  \\  \\ \bf\   \implies:  {a}^{8n - 8n + 11 - 13}  \\  \\ \bf\   \implies:  {a}^{ - 2}

\bf\   14)a) {( \frac{81}{16}) }^{ \frac{ - 1}{4} }  \\  \\ \bf\   \implies:  {  \frac{ ({3}^{4}) }{( {2}^{4} )} }^{ \frac{ - 1}{4} }  \\  \\ \bf\   \implies:  {( \frac{3}{2} )}^{4 \times  \frac{ - 1}{4} }  \\  \\ \bf\   \implies:  { \frac{3}{2} }^{ - 1}  \\  \\ \bf\   \implies:  \frac{2}{3}

\bf\   14)b) {64}^{ \frac{2}{3} }  +  \sqrt[3]{125} +  {3}^{0}  +  \frac{1}{ {2}^{ - 5} }   +  {27}^{ \frac{ - 2}{3} }  \\  \\ \bf\   \implies:  {(4)}^{ {3}^.{ \frac{2}{3} } } + 5 + 1 +  {2}^{5} +  {5}^{ {3}^.{ \frac{ - 2}{3} } }    \\  \\ \bf\   \implies:  {4}^{2}  + 5 + 1 +  {2}^{5}  +  {3}^{ - 2}  \\  \\ \bf\   \implies:  \frac{ 486+ 1}{9}  \\  \\ \bf\   \implies:  \frac{487}{9}  \\  \\ \bf\ 14)c)   \sqrt{ \frac{ {y}^{3} }{x} }  \times  \sqrt{ \frac{y}{x} }  \\  \\ \bf\   \implies:  \sqrt{ \frac{ {y}^{4} }{ {x}^{2} } }  \\  \\ \bf\   \implies:  {y}^{2}

\bf\  15) \frac{ { \frac{ - 3}{11} }^{(x + 5)} }{ { \frac{ - 3}{11} }^{ (- 2x + 3}  )}  =  { \frac{ - 3}{11} }^{(2x - 5)}  \times  { \frac{ - 3}{11} }^{ { - 2}^{(x + 4)} }  \\  \\ \bf\   \implies:   { \frac{ - 3}{11} }^{x + 5 + 2x - 3}  =  { \frac{ - 3}{11} }^{2x - 5 - 2x - 8}  \\  \\ \bf\   \implies: 3x + 2 =  - 13 \\  \\ \bf\   \implies: 3x =  - 15 \\  \\ \bf\   \implies: x =  \frac{ - 15}{3}  \\  \\ \bf\   \implies: x =  - 5 \\  \\ \large\boxed{ \fcolorbox{red}{blue}{hope \: it \: help \: you}}

Similar questions