Math, asked by unknownboy2, 17 hours ago

pls tell 5he anz fast​

Attachments:

Answers

Answered by ItzDangerBhai
2

 \huge  \pink{ \underline{ \underline \red{\bf{Solution:}}}}

 \bf{Given  \: inequation, \:  \frac{(4x - 10)}{3}  ≤ \:  \frac{(5x -7)}{2} }

 \bf{2(4x - 10) \: ≤ \: 3(5x–7)} [On cross-multiplying

 \bf{8x–20 \: ≤ \: 15x–21}

 \bf{8x–15x \: ≤ \: −21+20}

 \bf{−7x \: ≤ \: −1}

 \bf{−x \: ≤ \:   - \frac{1}{7}}

 \bf{x \:  ≥\:   \frac{1}{7}}

 \bf{As  \: x \: ∈ \: R}

Hence, the solution set is \bf{x: \: x \: ∈ \: R,x \: ≥ \:  \frac{1}{7}}

So, the correct option is C \bf{\bigg( \:  x: \: x \: ∈ \: R,x \: ≥ \:  \frac{1}{7} \bigg)}.

Representing the solution on a number line:

Attachments:
Answered by SANDHIVA1974
2

Answer:

\huge  \green{ \underline{ \underline \green{\bf{Solution:}}}}

 \bf{Given  \: inequation, \:  \frac{(4x - 10)}{3}  ≤ \:  \frac{(5x -7)}{2} }

 \bf{2(4x - 10) \: ≤ \: 3(5x–7)} [On cross-multiplying

 \bf{8x–20 \: ≤ \: 15x–21}

 \bf{8x–15x \: ≤ \: −21+20}

 \bf{−7x \: ≤ \: −1}

 \bf{−x \: ≤ \:   - \frac{1}{7}}

 \bf{x \:  ≥\:   \frac{1}{7}}

 \bf{As  \: x \: ∈ \: R}

Hence, the solution set is \bf{x: \: x \: ∈ \: R,x \: ≥ \:  \frac{1}{7}}

So, the correct option is C \bf{\bigg( \:  x: \: x \: ∈ \: R,x \: ≥ \:  \frac{1}{7} \bigg)}.

Representing the solution on a number line:[/tex]

Similar questions