Math, asked by kksnraju3, 1 month ago

pls tell fast guys pls

Attachments:

Answers

Answered by Anonymous
44

Answer:

 \: {\large{\pmb{\sf{★Given...}}}}

{ \sf{ \frac{ \sqrt{7}  - 1}{ \sqrt{7}  + 1}  -  \frac{ \sqrt{7} + 1 }{ \sqrt{7}  - 1}  = a + b \sqrt{7} }} \\

 \: {\large{\pmb{\sf{★To \:  Find...}}}}

Value of a and b..?

 \: {\large{\pmb{\sf{★Used  \: Formula...}}}}

(a² - b²) = (a + b) (a -b)

(a + b)² = a² + b² + 2ab

(a - b)² = a² + b² - 2ab

 \: {\large{\pmb{\sf{★Solution...}}}}

By doing LCM,

 :  \implies{ \sf{ \frac{ \sqrt{7}  - 1}{ \sqrt{7}  + 1}  -  \frac{ \sqrt{7} + 1 }{ \sqrt{7}  - 1}   }} \\

 : { \implies { \sf{ \frac{ {( \sqrt{7 } - 1) }^{2}  -  {( \sqrt{7} + 1) }^{2} }{( \sqrt{7}  + 1)( \sqrt{7}  - 1)} }}} \\

 \:  : { \implies { \sf{ \frac{ {( \sqrt{7} ) }^{2} +  {(1)}^{2}   - 2( \sqrt{7})(1) - ( { \sqrt{7})   }^{2}  +  {1}^{2}   + 2( \sqrt{7} )(1)}{ { \sqrt{(7}) }^{2} -  {(1)}^{2}  }  }}} \\

 \:  : { \implies { \sf{ \frac{7 + 1 - 2 \sqrt{7} - (7 + 1  +  2 \sqrt{7})  }{7 - 1} }}} \\

 \:  : { \implies { \sf{ \frac{8   -  2 \sqrt{7} - (8  +  2 \sqrt{7}  )}{6} }}} \\

 \:  : { \implies { \sf \frac{8 - 2 \sqrt{7}  - 8 - 2 \sqrt{7} }{6} {}}} \\

 : { \implies{ \sf{ \frac{ - 2 \sqrt{7} - 2 \sqrt{7}  }{6} }}} \\

 \:  : { \implies{ \sf{ \frac{ - 4 \sqrt{7} }{6} }}} \\

 \:  : { \implies{ \sf{ \frac{ -   \cancel{ \:  {4}}^{2} ( \sqrt{7}) }{ \cancel{ {6}}^{3} } }}} \\

 \: : { \implies{ \sf{ \frac{ - 2 \sqrt{7} }{3} }}} \\

Comparing -2√7/3 with a + b√7

We get,

  • a = 0
  • b = -2/3

 \: {\large{\pmb{\sf{★Final  \: Answer...}}}}

Therefore, a = 0 , b = -2/3

━━━━━━━━━━━━━━━━━━━━━━━━

Note...

If You are a app user, swipe to left side for getting solution.

Similar questions