Math, asked by samridhjadon77, 2 months ago

pls tell how to solve fast pls pls ​

Attachments:

Answers

Answered by Anonymous
4

Answer:

x²/y²

Step-by-step explanation:

 \frac{ \sqrt{ {x}^{2} +  {y}^{2}  } - y }{x -  \sqrt{ {x}^{2} -  {y}^{2}  } }  \div  \frac{ \sqrt{ {x}^{2}  -  {y}^{2} }  + x}{ \sqrt{ {x}^{2}  +  {y}^{2} } + y }  \\  =  \frac{ \sqrt{ {x}^{2} +  {y}^{2}  } - y }{x -  \sqrt{ {x}^{2} -  {y}^{2}  } } \times  \frac{ \sqrt{ {x}^{2}  +  {y}^{2} }  + y}{ \sqrt{ {x}^{2} -  {y}^{2}  }  + x}  \\  =  \frac{ (\sqrt{ {x}^{2} +  {y}^{2}  } - y ) \times(\sqrt{ {x}^{2}   +   {y}^{2}  }  +  y ) }{(x -  \sqrt{ {x}^{2}  +   {y}^{2}  } ) \times(   x +  \sqrt{ {x}^{2} -  {y}^{2}  } ) } \\   =  \frac{ {( \sqrt{ {x}^{2} +  {y}^{2}  })}^{2}  -  {y}^{2}  }{ {x}^{2}  -  {( \sqrt{ {x}^{2} -  {y}^{2}  } })^{2} }  \\  =  \frac{ {x }^{2} +  {y}^{2} -  {y}^{2}   }{ {x}^{2} - ( {x}^{2}  -  {y}^{2} ) }  \\  =  \frac{ {x}^{2} }{ {x}^{2}  -  {x}^{2}  +  {y}^{2} }  \\  =  \frac{ {x}^{2} }{ {y}^{2} }  \\

Note:-

Formula used in this question--

(a+b)(a-b) = (a)² - (b)²

Similar questions