Math, asked by nishkasingh25, 1 month ago

pls tell me the first answer no spaming or else you will be reported.​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\: - 3 <  - \dfrac{1}{2}  - \dfrac{2x}{3} \leqslant \dfrac{5}{6}

Consider,

\rm :\longmapsto\: - 3 <  - \dfrac{1}{2}  - \dfrac{2x}{3}

\rm :\longmapsto\: - 3 <   \dfrac{ - 3 - 4x}{6}

On multiply by 6, both sides we get,

\rm :\longmapsto\: - 18 <  - 3 - 4x

Adding 3 on both sides, we get

\rm :\longmapsto\: - 18 + 3 < - 4x

\rm :\longmapsto\: - 15 < - 4x

\rm :\longmapsto\: - 4x >  - 15

On dividing by - 4, we get

\bf\implies \:x < \dfrac{15}{4}  -  -  - (1)

Now, Consider

\rm :\longmapsto\: - \dfrac{1}{2}  - \dfrac{2x}{3} \leqslant \dfrac{5}{6}

\rm :\longmapsto\:  \dfrac{ - 3 - 4x}{6} \leqslant \dfrac{5}{6}

On multiply by 6 on both sides, we get

\rm :\longmapsto\: - 3 - 4x \leqslant 5

On adding 3, bothsides, we get

\rm :\longmapsto\: - 4x \leqslant 5 + 3

\rm :\longmapsto\: - 4x \leqslant 8

\bf\implies \:x \geqslant  - 2 -  -  - (2)

From equation (1) and equation (2), we concluded that

\rm :\longmapsto\: - 2 \leqslant x < \dfrac{15}{4}

\bf\implies \:x \:  \in \: \bigg[ - 2, \: \dfrac{15}{4}\bigg)

Additional Information :-

\red{\boxed{ \rm{x > y \:  \implies \:  - x <  - y}}}

\red{\boxed{ \rm{x  <  y \:  \implies \:  - x  >   - y}}}

\red{\boxed{ \rm{x   \leqslant   y \:  \implies \:  - x   \geqslant    - y}}}

\red{\boxed{ \rm{x   \geqslant   y \:  \implies \:  - x   \leqslant    - y}}}

Answered by TMarvel
0

Step-by-step explanation:

 - 3 <     \frac{ -  1}{2}  -  \frac{2x}{3}  \leqslant  \frac{5}{6}  \\    - 3 <   -   \frac{(4x  + 3)}{6}   \leqslant  \frac{5}{6} \\    - 18 <  - 4x  - 3 \leqslant 5 \\   - 15 <  - 4x \leqslant 8 \\  -  \frac{15}{4}  <  - x \leqslant 2 \\  \frac{15}{4}  > x \geqslant  - 2 \\ 3.75 > x \geqslant  - 2

I think u can complete the answer on ur own from here

good luck

Hope it helps :D

Similar questions