Math, asked by anshikajain1501, 1 month ago

pls tell the answer fast ​

Attachments:

Answers

Answered by BlessedOne
37

Given :

  • \sf\:\frac{x+4}{2x+4}=\frac{1}{4}

To find :

  • The value of x.

Solution :

\sf\:\frac{x+4}{2x+4}=\frac{1}{4}

Cross multiplying

\sf\implies\:4(x+4)=1(2x+4)

\sf\implies\:4x+16=2x+4

Transposing 2x in LHS it becomes -2x

\sf\implies\:4x-2x+16=4

\sf\implies\:2x+16=4

Transposing +16 in RHS it becomes -16

\sf\implies\:2x=4-16

\sf\implies\:2x=-12

Transposing 2 to RHS it goes to the denominator

\sf\implies\:x=\frac{-12}{2}

Reducing the fraction to lower terms

\sf\implies\:x=\cancel{\frac{-12}{2}}

\small{\underline{\boxed{\mathrm{\implies\:x=(-6)}}}} \tt\color{teal}{\checkmark}

Verification :

Plugging the value of x as (-6)

\sf\:\frac{x+4}{2x+4}=\frac{1}{4}

\sf\dashrightarrow\:\frac{(-6)+4}{2(-6)+4}=\frac{1}{4}

\sf\dashrightarrow\:\frac{-6+4}{-12+4}=\frac{1}{4}

\sf\dashrightarrow\:\frac{-2}{-8}=\frac{1}{4}

Cross multiplying

\sf\dashrightarrow\:(-2) \times 4=1 \times (-8)

\sf\dashrightarrow\:(-8)=(-8)

\bf\dashrightarrow\:LHS=RHS

Hence Verified !~

______________________

Henceforth‎ -

❒ The value of x is \large{\mathfrak\purple{(-6)}}

Answered by SugarCrash
35
\LARGE\sf\underline{\red{Question}}:\\

\:\:\:\star \sf {Find \: Solution} : \dfrac{x+4}{2x+4} = \dfrac{1}{4}
\\\LARGE\sf\underline{\red{Solution}}:\\

\longmapsto\sf \dfrac{x+4}{2x+4} = \dfrac{1}{4} \\\\\bigstar\textbf{Cross Multiplying}\\\\\implies\sf 4(x+4)=1(2x+4) \\\\\bigstar\textbf{Opening brackets by multiplying}\\\\\implies \sf 4x+16=2x+4 \\\\\bigstar\textbf{Adding (-4x) on both the sides}\\\\\implies\sf 4x\blue{-4x}+16=2x+4\blue{-4x}\\\\\implies\sf \cancel{4x} \: \cancel{-4x} + 16 = -2x +4 \\\\\implies \sf 16 = -2x + 4\\\\\bigstar\textbf{Adding (-4) on both the sides } \\\\\implies 16\blue{-4} = -2x + 4 \blue{-4} \\\\\implies 12 = -2x + \cancel{4}\: \cancel{-4} \\\\\implies \sf 12=-2x \\\\\bigstar\textbf{dividing both sides by 2} \\\\\implies\sf \frac{12}{2} = \frac{-\cancel{2}x}{\cancel{2}} \\\\\implies 6 = -x \\\\\implies\underline{\boxed{\pink{x=-6}}}

\large\sf\underline{Therefore},
• value of x is -6
Similar questions