Math, asked by SoulVardan, 7 months ago

pls tell the answer of these two​

Attachments:

Answers

Answered by AlluringNightingale
5

1). Question :

Factorize the following :

a). - 14y + 49

=> y² - 14y + 49

=> y² - 2•y•7 + 7²

=> (y - 7)²

=> (y - 7)(y - 7)

b). + 3x - 40

=> x² + 3x - 40

=> x² + 8x - 5x - 40

=> x(x + 8) - 5(x + 40)

=> (x + 8)(x - 5)

2). Question :

Find the height of trapezium , the sum of lengths of whose parallel sides is 60 cm and whose area is 600 cm² .

Note :

  • If a and b are the lengths of parallel sides and h is the height of trapezium , then the area of the trapezium is given by A = (a + b)•h

Solution :

  • Given : Sum of parallel sides of trapezium , (a+b) = 60 cm , Area of trapezium , A = 600 cm²
  • To find : Height of trapezium , h = ?

We have ;

=> A = 600

=> (a + b)•h = 600

=> 60h = 600

=> h = 600/60

=> h = 10

Hence ,

The height of the trapezium is 10 cm .

Answered by asritadevi2gmailcom
0

a. {y}^{2}  - 14y + 49 \\  \longmapsto {y}^{2}  - 14y + 49 \\  \longmapsto \:  {y}^{2}  - 2 \: y \: 7 +  {7}^{2}  \\  \longmapsto \: (y -  {7})^{2}  \\  \longmapsto \: (y - 7)(y - 7) \\  \\  \\ b. {x}^{2}  + 3x - 40 \\  \longmapsto \:  {x}^{2}  + 3x - 40 \\  \longmapsto \:  {x}^{2}  + 8x - 5x - 40\\  \longmapsto \: x(x + 8)( x - 5) \\  \longmapsto \: a = 600 \\  \longmapsto(a + b)h = 600 \\  \longmapsto60h = 600  \\  \longmapsto \: h = 600 \div 60 \\  \longmapsto \tt \: h = 10
Similar questions