Physics, asked by gitikaasachdev, 3 months ago

pls tell the answers

Attachments:

Answers

Answered by Anonymous
28

Answer:

The dot product of Perpendicular vector must be equal to zero.

Let's check the option one by one which satisfy the above condition.

Option (I)

\longrightarrow \tt (\hat{i}  +  \hat{j} +  \hat{k} ).(\hat{i}   -   \hat{j} +  \hat{k} ) = 0

\longrightarrow \tt1 - 1 + 1 = 0

\longrightarrow \tt 1  \neq 0

Option (ii)

\longrightarrow \tt(\hat{i}  +  \hat{j} +  \hat{k} ).(3\hat{i}    + 2  \hat{j}  - 5 \hat{k} ) = 0

\longrightarrow \tt3 +2  - 5 = 0

\longrightarrow \tt5  - 5 = 0

\longrightarrow \tt0= 0

Option (iii)

\longrightarrow \tt(\hat{i}  +  \hat{j} +  \hat{k} ).( - \hat{i}     -    \hat{j}  - \hat{k} ) = 0

\longrightarrow \tt - 1 - 1 - 1= 0

\longrightarrow\tt- 2 - 1= 0

\longrightarrow \tt- 3 \neq 0

Option (iv)

\longrightarrow \tt(\hat{i}  +  \hat{j} +  \hat{k} ).( - 3\hat{i}  +  2   \hat{j}  -5 \hat{k} ) = 0

\longrightarrow \tt - 3 + 2 - 5 = 0

\longrightarrow \tt- 1 - 5 = 0

\longrightarrow \tt- 6  \neq0

By observing the above options we clearly see that only option (ii) is satisfying the given condition.

Hence, the option (ii) is correct.


TheValkyrie: Awesome!
Anonymous: Thank you!
Similar questions