pls this question.
Attachments:
Answers
Answered by
1
Ans 2 Here is ur answer...
Refer to the above attachment..
Refer to the above attachment..
Attachments:
muskaann90:
wlcm..
Answered by
1
2nd answer is in the attachment
ANSWER 1st :-
Given If n is odd number and n > 1.to prove that (n, n²-1/2,n²+1/2)is a Pythagorean triplet.
Consider (n, n^2 - 1/2, n^2 + 1/2)
Let us take the smaller side , so square of two smaller sides will be
n^2 + (n^2 - 1/2)^2
n ^2 + n^2 - 2n^2 + 1 / 4 (we have (a - b)^2 = a^2 -2ab + b^2)
n^4 + 2n^2 + 1 / 4 = (n^ + 1 /2)^2 is the smaller side.
Now larger side = (n^2 + 1 /2)^2 = n^4 + 2n^2 + 1/4
So the square of the larger side is equal to the sum of the two smaller sides.
Pythagoras theorem states that the square on the hypotenuse is equal to the sum of the square on the other two sides.
Now n >1
n = 3, n^2 - 1/2 = 3^2 - 1/2 = 4, n^ + 1 / 2 = 5
we get 3, 4, 5
n = 5, 5^2 - 1 /2 = 12, 5^2 + 1 / 2 = 13
we get 5, 12, 13
PLZZ MARK IT AS BRAINLIEST...
ANSWER 1st :-
Given If n is odd number and n > 1.to prove that (n, n²-1/2,n²+1/2)is a Pythagorean triplet.
Consider (n, n^2 - 1/2, n^2 + 1/2)
Let us take the smaller side , so square of two smaller sides will be
n^2 + (n^2 - 1/2)^2
n ^2 + n^2 - 2n^2 + 1 / 4 (we have (a - b)^2 = a^2 -2ab + b^2)
n^4 + 2n^2 + 1 / 4 = (n^ + 1 /2)^2 is the smaller side.
Now larger side = (n^2 + 1 /2)^2 = n^4 + 2n^2 + 1/4
So the square of the larger side is equal to the sum of the two smaller sides.
Pythagoras theorem states that the square on the hypotenuse is equal to the sum of the square on the other two sides.
Now n >1
n = 3, n^2 - 1/2 = 3^2 - 1/2 = 4, n^ + 1 / 2 = 5
we get 3, 4, 5
n = 5, 5^2 - 1 /2 = 12, 5^2 + 1 / 2 = 13
we get 5, 12, 13
PLZZ MARK IT AS BRAINLIEST...
Attachments:
Similar questions