Math, asked by sanikapatil2005, 1 year ago

Pls urgent answer Q7 viii) and Q10 iv) and vi).

Attachments:

sanikapatil2005: Pls answer fast

Answers

Answered by Swarup1998
19
\underline{\text{7. (viii)}}

\text{Now,}\:\frac{\sqrt[5]{4}}{\sqrt[5]{50}}

=\frac{4^{1/5}}{50^{1/5}}

=\frac{(2^{2})^{1/5}}{(2\times 5^{2})^{1/5}}

=\frac{2^{2/5}}{2^{1/5}\times 5^{2/5}}

=\frac{2^{2/5}\times 2^{-1/5}}{5^{2/5}}

=\frac{2^{1/5}\times 5^{3/5}}{5^{2/5}\times 5^{3/5}}

=\frac{(2\times 5^{3})^{1/3}}{5^{5/5}}

=\frac{250^{1/5}}{5^{1}}

=\frac{\sqrt[5]{250}}{5}

\to \boxed{\frac{\sqrt[5]{4}}{\sqrt[5]{50}}=\frac{\sqrt[5]{250}}{5}} ,


\text{which is the required rationalisation.}

\underline{\text{10. (iv)}}

\text{Now,}\:\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}

=\frac{(\sqrt{5}+\sqrt{3})^{2}+(\sqrt{5}-\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}

=\frac{5+2\sqrt{5}\sqrt{3}+3+5-2\sqrt{5}\sqrt{3}+3}{5-3}

=\frac{16}{2}=8

\to \boxed{\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=8}

\underline{\text{10. (vi)}}

\text{Given,}\:x=5+\sqrt{5}

\text{Then,}\:x^{2}=(5+\sqrt{5})^{2}

=5^{2}+2.5.\sqrt{5}+(\sqrt{5})^{2}

=25+10\sqrt{5}+5

=30+10\sqrt{5}

\implies x^{2}=30+10\sqrt{5}

\text{and}\:x^{3}=(5+\sqrt{5})^{3}

=5^{3}+3.5^{2}.\sqrt{5}+3.5.(\sqrt{5})^{2}+(\sqrt{5})^{3}

=125+75\sqrt{5}+75+5\sqrt{5}

=200+80\sqrt{5}

\implies x^{3}=200+80\sqrt{5}

\therefore 10x+7x^{2}-x^{3}

=10(5+\sqrt{5})+7(30+10\sqrt{5})-(200+80\sqrt{5})

=50+10\sqrt{5}+210+70\sqrt{5}-200-80\sqrt{5}

=60

\implies \boxed{10x+7x^{2}-x^{3}=60}

Swarup1998: It is same. Okay. I will edit that part.
sanikapatil2005: Ok
sanikapatil2005: Hey u are master
sanikapatil2005: Thanks very much ^^
sanikapatil2005: :)
sanikapatil2005: Pls accept my friend invitation
Swarup1998: Edited! :)
sanikapatil2005: Thanks :)
Anonymous: Great Effort
Swarup1998: Thank you! : )
Similar questions