Math, asked by nisheshstha24, 2 days ago

pls with process i will give 20 points

Attachments:

Answers

Answered by amansharma264
9

EXPLANATION.

⇒ (a - 1/a) = 9.

As we know that,

Squaring on both sides of the equation, we get.

⇒ (a - 1/a)² = (9)².

As we know that,

Formula of :

⇒ (x - y)² = x² + y² - 2xy.

Using this formula in the equation, we get.

⇒ (a)² + (1/a)² - 2(a)(1/a) = 81.

⇒ a² + 1/a² - 2 = 81.

⇒ a² + 1/a² = 81 + 2.

⇒ a² + 1/a² = 83.

As we know that,

Formula of :

⇒ (x + y)² = (x - y)² + 4xy.

Using this formula in the equation, we get.

⇒ (a + 1/a)² = (a - 1/a)² + 4(a)(1/a).

⇒ (a + 1/a)² = (a)² + (1/a)² - 2(a)(1/a) + 4(a)(1/a).

⇒ (a + 1/a)² = a² + 1/a² - 2 + 4.

⇒ (a + 1/a)² = a² + 1/a² + 2.

Put the value of (a² + 1/a² = 83) in the equation, we get.

⇒ (a + 1/a)² = 83 + 2.

⇒ (a + 1/a)² = 85.

Answered by Anonymous
60

\tt \underline\purple{Given:-}

 \:  \:  \:  \:  \:  \: \bullet\sf{ \:  \:  {a}^{2}  +   \frac{1} {a}^{2} = 83 }

 \:  \:  \:  \:  \:  \:  \:  \bullet\sf{ \:( a +  \frac{1}{a})  ^{2}  = 85}

\tt\underline\purple{Find:-}

  • The value of the question.

\tt\underline\purple{Solution:-}

\begin{gathered}\begin{gathered}{\large \qquad \boxed{\boxed{\begin{array}{cc}  \sf(i) \: \: \bf \:  {a}^{2} +  \frac{1}{ {a}^{2} }  = 83  \\ \\  \ \sf   \mapsto \:  {a}^{2}  +  \frac{1}{ {a}^{2} } =  \frac{2a}{1a}   = 81 \\  \\  \sf \mapsto \:  {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2 = 81 \\  \\  \sf \mapsto \:  {a}^{2} +  \frac{1}{ {a}^{2} }   = 81 + 2 \\  \\  \sf   \dashrightarrow   \purple{{a}^{2}   +  \frac{1}{ {a}^{2} }   = 83}  \\  \\  \\  \\ \bf (ii)(a +  \frac{1}{a} ) ^{2}  = 85 \\  \\  \sf \mapsto( \frac{a - 1}{a}) ^{2}   + 4a \times 1a \\  \\  \sf \mapsto \:  {a}^{2}  +   \frac{1}{ {a}^{2} }   = 83 \\  \\  \sf \mapsto \: 83 + 2 \\  \\  \dashrightarrow \sf \fbox \purple{85} \end{array}}}}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Note :

  • See this answer in brainly website link :https://brainly.in/question/47194038

@Shivam

@keep questioning

Similar questions