Math, asked by riddhima15, 1 year ago

plsanswer 1 and 2 both

Attachments:

Answers

Answered by neelotpal136
1

here's both the answer!

hope it helps you

please mark me as brainlist

thank you!

Attachments:
Answered by shreya32457
1
___________________________________

in the 1st figure :

AB is a straight line ......

oc stands on it .....

___________________________________

\angle \: aoc \: + \: \angle \: boc \: = 180\degree \\ \\ (2x - 10)\degree + \: (3x + 20)\degree = 180\degree \\ \\ 2x + 3x - 10 + 20 = 180\degree \\

(5x + 10)\degree = 180 \\ \\ 5x = (180 - 10)\degree \\ \\ 5x = 170\degree \\ \\ x = \frac{170}{5} \\ \\ \bold{x = 34\degree}

_____________________________

(2x - 10)\degree = 2 \times 34 - 10 \\ \\ (2x - 10)\degree = 68 - 10 \\ \\ \bold{(2x - 10)\degree = 58\degree} \\ \\

____________________________

(3x + 20)\degree = 3 \times 34 + 20 \\ \\ (3x + 20)\degree = 102 + 20 \\ \\ \bold{(3x + 20)\degree = 122\degree}

___________________________________

in 2nd figure ,

seg \: ab \: \parallel \: seg \: ce \: \\ \\ ac \: is \: a \: transversal \: \\ \\ \angle \: bac \: = \: \angle \: ace \: \\ \\ \bold{60\degree \: = \: \angle \: ace \: } \\ \\

___________________________________

\angle \: bca \: + \angle \: ace \: + \angle \: ecd = 180\degree \\ \\ \angle \: bca \: + 60\degree \: + 65\degree \: = 180\degree \\ \\ \angle \: bca \: = 180\degree - ( \: 60\degree \: + \: 65\degree \: ) \\

\angle \: bca \: = \: 180\degree \: - 125\degree \\ \\ \bold{\angle \: bca \: = \: 55\degree}

___________________________________
Similar questions