Math, asked by rk0235759, 5 months ago

        plse sove 2nd bit and 6th bit . plse plse solve it . it was very urgent ​

Attachments:

Answers

Answered by Anonymous
151

SOLUTION:--

ii)

 \sf \: let \:  \bigg( \dfrac{4x - 3}{3x + 1}  \bigg) \: be \: y

Then the equation becomes

 \sf \implies \: y- \dfrac{10}{y}  = 3

\sf \implies \:  \dfrac{ {y}^{2} -  10}{y}  = 3

\sf \implies \: { {y}^{2} -  10}{y}  = 3y

\sf \implies \: {y}^{2}  - 3y - 10y= 0

By using mid-term splitting method

\sf \implies \: {y}^{2}  - 5y+ 2y- 10y= 0

\sf \implies \: {x}(x - 5) + 2(x - 5) = 0

\sf \implies \: (y + 2)(y - 5) =  0

\sf \implies \: y =  - 2 \: or \: y = 5

Now

 \sf \implies \:  \bigg( \dfrac{4x - 3}{3x + 1}  \bigg) \: = y

 \sf \implies \:  \bigg( \dfrac{4x - 3}{3x + 1}  \bigg) \: =  - 2

 \sf \implies \:  {4x - 3} =  - 2(3x + 1)

\sf \implies \:  {4x - 3} =   -6x - 2

\sf \implies \:  4x  + 6x =  - 2 + 3

 \implies \sf \: 10x = 1

 \boxed{ \implies \sf \: x =  \dfrac{1}{10}}

Also

 \sf \implies \:  \bigg( \dfrac{4x - 3}{3x + 1}  \bigg) \: =  5

 \sf \implies \:  {4x - 3} \: =  5(3x + 1)

 \implies \sf \: 4x + 3 = 15x + 5

 \implies \sf - 11x = 2

 \boxed{ \implies \sf \: x =  \dfrac{ - 11}{2} }

vi)

We have

 \implies \sf \dfrac{1}{x + 1}  +  \dfrac{2}{x + 2} =  \dfrac{4}{x + 4}

 \implies \sf  \dfrac{(x + 2) + 2(x + 1)}{(x + 1)(x + 2)} =  \dfrac{4}{x + 4}

 \implies \sf \dfrac{3x + 4}{x^{2}  + 3x + 2}  =  \dfrac{4}{x + 4}

 \implies \sf \: (3x + 4)(x + 4) = 4( {x}^{2}  + 3x + 2)

 \implies \sf \: 3 {x}^{2}  + 12x + 4x +16 = 4 {x}^{2}  + 12x + 8

 \implies \sf \:  {3x}^{2}  + 16x + 16 =  {4x}^{2}  + 12x + 8

 \implies \sf \:  { - x}^{2} + 4x  + 8 = 0

 \implies \sf {x}^{2}  - 4x -  8 = 0

Here a=1 ,b=-4 and c=-8

Similar questions