Math, asked by hitensays, 5 months ago

Plspls help help help​

Attachments:

Answers

Answered by UniquePrincess1234
3

Hope it helps you.......

Attachments:
Answered by MagicalBeast
8

Solve :

\sf \bigg( \dfrac{4}{9}\bigg)^{ - 6}  \times  \bigg( \dfrac{2}{3}  \bigg)^{2}  \div  { \bigg( \dfrac{3}{2} \bigg) }^{10}

Identity used :

\sf \bullet  \:  \:  { \bigg( \dfrac{a}{b} \bigg) }^{m}   \:  =  \: \dfrac{ {a}^{m} }{  {b}^{m} }  \\  \\ \sf \bullet  \:   { \bigg( \dfrac{a}{b} \bigg) }^{ - m}  =   { \bigg( \dfrac{b}{a} \bigg) }^{m}  \\  \\ \sf \bullet  \: {( {a}^{m} )}^{n}  \:  =  \:  {a}^{(m \times n)}  \\  \\ \sf \bullet  \: \dfrac{ {a}^{m} }{  {a}^{n} } \:  =  \:  {a}^{(m - n)}  \\  \\ \sf \bullet  \:  {a}^{0}  \:   = \: 1

Solution :

\sf  \implies \: \bigg( \dfrac{4}{9}\bigg)^{ - 6}  \times  \bigg( \dfrac{2}{3}  \bigg)^{2}  \div  { \bigg( \dfrac{3}{2} \bigg) }^{10}  \\  \\ \sf \implies \bigg( \dfrac{9}{4}\bigg)^{  6}  \times  \bigg( \dfrac{2}{3}  \bigg)^{2}  \div  { \bigg( \dfrac{3}{2} \bigg) }^{10}  \\  \\ \sf  \:  \implies \: \bigg( \dfrac{ {3}^{2} }{ {2}^{2} }\bigg)^{ 6}  \times  \bigg( \dfrac{2}{3}  \bigg)^{2}  \div  { \bigg( \dfrac{3}{2} \bigg) }^{10}  \\  \\ \sf  \:  \implies \: \bigg( \dfrac{ {3}^{(2 \times 6)} }{ {2}^{(2 \times 6)} }\bigg)  \times  \bigg( \dfrac{2^{2} }{ {3}^{2} }  \bigg) \div  { \bigg( \dfrac{ {3}^{10} }{ {2}^{10} } \bigg) } \\  \\  \sf \implies \: \bigg( \dfrac{ {3}^{12} }{ {2}^{12} }\bigg)  \times  \bigg( \dfrac{2^{2} }{ {3}^{2} }  \bigg)  \times { \bigg( \dfrac{ {2}^{10} }{ {3}^{10} } \bigg) } \\  \\  \sf \implies \:  \dfrac{ {3}^{12} \times  {2}^{2} \times  {2}^{10}   }{ {2}^{12} \times  {3}^{2}  \times  {3}^{10}  }  \\  \\  \sf \implies \:  {3}^{(12 - 2 - 10)}  \times  {2}^{(2 + 10 - 12)}  \\  \\ \sf \implies \:  {3}^{0}  \times  {2}^{0}  \\  \\ \sf \implies \: 1 \times 1 \\  \\ \sf \implies \: 1

ANSWER : 1


TheValkyrie: Brilliant!
Similar questions