plss answer...its fast....
Answers
❤(a−b)3=a3−3a2b+3ab3−b3✔
❤(a+b)3 =a3+3∗a2∗b+3∗a∗b2+b3✔
^_^.
Answer:
( a + b )³ = a³ + b³ + 3a²b + 3ab² and
( a - b )³ = a³ - b³ - 3a²b + 3ab²
Step-by-step explanation:
Given: ( a + b )³ and ( a - b )³
To find: Expansion of Given expressions
First consider,
( a + b )³
= ( a + b ) × ( a + b )²
= ( a + b ) × ( a² + b² + 2ab ) ( identity used, ( a + b )² = a² + b² + 2ab )
= a × ( a² + b² + 2ab ) + b × ( a² + b² + 2ab )
= a³ + ab² + 2a²b + a²b + b³ + 2ab²
= a³ + b³ + 2a²b + a²b + ab² + 2ab²
= a³ + b³ + 3a²b + 3ab²
Now Consider,
( a - b )³
= ( a - b ) × ( a - b )²
= ( a + b ) × ( a² + b² - 2ab ) ( identity used, ( a - b )² = a² + b² - 2ab )
= a × ( a² + b² - 2ab ) - b × ( a² + b² - 2ab )
= a³ + ab² - 2a²b - a²b - b³ + 2ab²
= a³ - b³ - 2a²b - a²b + ab² + 2ab²
= a³ - b³ - 3a²b + 3ab²
Therefore, ( a + b )³ = a³ + b³ + 3a²b + 3ab² and
( a - b )³ = a³ - b³ - 3a²b + 3ab²